Documentation

Mathlib.AlgebraicTopology.SimplicialSet.Degenerate

Degenerate simplices #

Given a simplicial set X and n : ℕ, we define the sets X.degenerate n and X.nonDegenerate n of degenerate or non-degenerate simplices of dimension n.

TODO (@joelriou) #

An n-simplex of a simplicial set X is degenerate if it is in the range of X.map f.op for some morphism f : [n] ⟶ [m] with m < n.

Equations
Instances For

    The set of n-dimensional non-degenerate simplices in a simplicial set X is the complement of X.degenerate n.

    Equations
    Instances For
      @[simp]
      theorem SSet.exists_nonDegenerate (X : SSet) {n : } (x : X.obj (Opposite.op (SimplexCategory.mk n))) :
      ∃ (m : ) (f : SimplexCategory.mk n SimplexCategory.mk m) (_ : CategoryTheory.Epi f) (y : (X.nonDegenerate m)), x = X.map f.op y
      theorem SSet.isIso_of_nonDegenerate (X : SSet) {n : } (x : (X.nonDegenerate n)) {m : SimplexCategory} (f : SimplexCategory.mk n m) [CategoryTheory.Epi f] (y : X.obj (Opposite.op m)) (hy : X.map f.op y = x) :