Degenerate simplices #
Given a simplicial set X
and n : ℕ
, we define the sets X.degenerate n
and X.nonDegenerate n
of degenerate or non-degenerate simplices of dimension n
.
TODO (@joelriou) #
SSet.exists_nonDegenerate
shows that anyn
-simplex can be written asX.map f.op y
for some epimorphismf : ⦋n⦌ ⟶ ⦋m⦌
and some non-degenerate simplexy
. Show thatf
andy
are unique.
An n
-simplex of a simplicial set X
is degenerate if it is in the range
of X.map f.op
for some morphism f : [n] ⟶ [m]
with m < n
.
Equations
- X.degenerate n = {x : X.obj (Opposite.op (SimplexCategory.mk n)) | ∃ (m : ℕ) (_ : m < n) (f : SimplexCategory.mk n ⟶ SimplexCategory.mk m), x ∈ Set.range (X.map f.op)}
Instances For
The set of n
-dimensional non-degenerate simplices in a simplicial
set X
is the complement of X.degenerate n
.
Equations
- X.nonDegenerate n = (X.degenerate n)ᶜ
Instances For
theorem
SSet.mem_nonDegenerate_iff_not_mem_degenerate
(X : SSet)
{n : ℕ}
(x : X.obj (Opposite.op (SimplexCategory.mk n)))
:
theorem
SSet.mem_degenerate_iff_not_mem_nonDegenerate
(X : SSet)
{n : ℕ}
(x : X.obj (Opposite.op (SimplexCategory.mk n)))
:
theorem
SSet.σ_mem_degenerate
(X : SSet)
{n : ℕ}
(i : Fin (n + 1))
(x : X.obj (Opposite.op (SimplexCategory.mk n)))
:
theorem
SSet.mem_degenerate_iff
(X : SSet)
{n : ℕ}
(x : X.obj (Opposite.op (SimplexCategory.mk n)))
:
x ∈ X.degenerate n ↔ ∃ (m : ℕ) (_ : m < n) (f : SimplexCategory.mk n ⟶ SimplexCategory.mk m) (_ : CategoryTheory.Epi f),
x ∈ Set.range (X.map f.op)
theorem
SSet.exists_nonDegenerate
(X : SSet)
{n : ℕ}
(x : X.obj (Opposite.op (SimplexCategory.mk n)))
:
∃ (m : ℕ) (f : SimplexCategory.mk n ⟶ SimplexCategory.mk m) (_ : CategoryTheory.Epi f) (y : ↑(X.nonDegenerate m)),
x = X.map f.op ↑y
theorem
SSet.isIso_of_nonDegenerate
(X : SSet)
{n : ℕ}
(x : ↑(X.nonDegenerate n))
{m : SimplexCategory}
(f : SimplexCategory.mk n ⟶ m)
[CategoryTheory.Epi f]
(y : X.obj (Opposite.op m))
(hy : X.map f.op y = ↑x)
: