Documentation

Mathlib.AlgebraicTopology.SimplicialSet.Degenerate

Degenerate simplices #

Given a simplicial set X and n : ℕ, we define the sets X.degenerate n and X.nonDegenerate n of degenerate or non-degenerate simplices of dimension n.

Any simplex x : X _⦋n⦌ can be written in a unique way as X.map f.op y for an epimorphism f : ⦋n⦌ ⟶ ⦋m⦌ and a non-degenerate m-simplex y (see lemmas exists_nonDegenerate, unique_nonDegenerate_dim, unique_nonDegenerate_simplex and unique_nonDegenerate_map).

An n-simplex of a simplicial set X is degenerate if it is in the range of X.map f.op for some morphism f : [n] ⟶ [m] with m < n.

Equations
Instances For

    The set of n-dimensional non-degenerate simplices in a simplicial set X is the complement of X.degenerate n.

    Equations
    Instances For
      @[simp]
      @[deprecated SSet.mem_nonDegenerate_iff_notMem_degenerate (since := "2025-05-23")]

      Alias of SSet.mem_nonDegenerate_iff_notMem_degenerate.

      @[deprecated SSet.mem_degenerate_iff_notMem_nonDegenerate (since := "2025-05-23")]

      Alias of SSet.mem_degenerate_iff_notMem_nonDegenerate.

      theorem SSet.exists_nonDegenerate (X : SSet) {n : } (x : X.obj (Opposite.op (SimplexCategory.mk n))) :
      ∃ (m : ) (f : SimplexCategory.mk n SimplexCategory.mk m) (_ : CategoryTheory.Epi f) (y : (X.nonDegenerate m)), x = X.map f.op y
      theorem SSet.isIso_of_nonDegenerate (X : SSet) {n : } (x : (X.nonDegenerate n)) {m : SimplexCategory} (f : SimplexCategory.mk n m) [CategoryTheory.Epi f] (y : X.obj (Opposite.op m)) (hy : X.map f.op y = x) :
      theorem SSet.mono_of_nonDegenerate (X : SSet) {n : } (x : (X.nonDegenerate n)) {m : SimplexCategory} (f : SimplexCategory.mk n m) (y : X.obj (Opposite.op m)) (hy : X.map f.op y = x) :

      Auxiliary definitions and lemmas for the lemmas unique_nonDegenerate_dim, unique_nonDegenerate_simplex and unique_nonDegenerate_map which assert the uniqueness of the decomposition obtained in the lemma exists_nonDegenerate.

      The following lemmas unique_nonDegenerate_dim, unique_nonDegenerate_simplex and unique_nonDegenerate_map assert the uniqueness of the decomposition obtained in the lemma exists_nonDegenerate.

      theorem SSet.unique_nonDegenerate_dim (X : SSet) {n : } (x : X.obj (Opposite.op (SimplexCategory.mk n))) {m₁ m₂ : } (f₁ : SimplexCategory.mk n SimplexCategory.mk m₁) [CategoryTheory.Epi f₁] (y₁ : (X.nonDegenerate m₁)) (hy₁ : x = X.map f₁.op y₁) (f₂ : SimplexCategory.mk n SimplexCategory.mk m₂) [CategoryTheory.Epi f₂] (y₂ : (X.nonDegenerate m₂)) (hy₂ : x = X.map f₂.op y₂) :
      m₁ = m₂
      theorem SSet.unique_nonDegenerate_simplex (X : SSet) {n : } (x : X.obj (Opposite.op (SimplexCategory.mk n))) {m : } (f₁ : SimplexCategory.mk n SimplexCategory.mk m) [CategoryTheory.Epi f₁] (y₁ : (X.nonDegenerate m)) (hy₁ : x = X.map f₁.op y₁) (f₂ : SimplexCategory.mk n SimplexCategory.mk m) (y₂ : (X.nonDegenerate m)) (hy₂ : x = X.map f₂.op y₂) :
      y₁ = y₂
      theorem SSet.unique_nonDegenerate_map (X : SSet) {n : } (x : X.obj (Opposite.op (SimplexCategory.mk n))) {m : } (f₁ : SimplexCategory.mk n SimplexCategory.mk m) [CategoryTheory.Epi f₁] (y₁ : (X.nonDegenerate m)) (hy₁ : x = X.map f₁.op y₁) (f₂ : SimplexCategory.mk n SimplexCategory.mk m) (y₂ : (X.nonDegenerate m)) (hy₂ : x = X.map f₂.op y₂) :
      f₁ = f₂
      def SSet.nonDegenerateEquivOfIso {X Y : SSet} (e : X Y) {n : } :
      (X.nonDegenerate n) (Y.nonDegenerate n)

      The bijection on nondegenerate simplices induced by an isomorphism of simplicial sets.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        @[simp]
        theorem SSet.nonDegenerateEquivOfIso_apply_coe {X Y : SSet} (e : X Y) {n : } (x✝ : (X.nonDegenerate n)) :
        @[simp]
        theorem SSet.nonDegenerateEquivOfIso_symm_apply_coe {X Y : SSet} (e : X Y) {n : } (x✝ : (Y.nonDegenerate n)) :