Degenerate simplices #
Given a simplicial set X
and n : ℕ
, we define the sets X.degenerate n
and X.nonDegenerate n
of degenerate or non-degenerate simplices of dimension n
.
Any simplex x : X _⦋n⦌
can be written in a unique way as X.map f.op y
for an epimorphism f : ⦋n⦌ ⟶ ⦋m⦌
and a non-degenerate m
-simplex y
(see lemmas exists_nonDegenerate
, unique_nonDegenerate_dim
,
unique_nonDegenerate_simplex
and unique_nonDegenerate_map
).
An n
-simplex of a simplicial set X
is degenerate if it is in the range
of X.map f.op
for some morphism f : [n] ⟶ [m]
with m < n
.
Equations
- X.degenerate n = {x : X.obj (Opposite.op (SimplexCategory.mk n)) | ∃ (m : ℕ) (_ : m < n) (f : SimplexCategory.mk n ⟶ SimplexCategory.mk m), x ∈ Set.range (X.map f.op)}
Instances For
The set of n
-dimensional non-degenerate simplices in a simplicial
set X
is the complement of X.degenerate n
.
Equations
- X.nonDegenerate n = (X.degenerate n)ᶜ
Instances For
Auxiliary definitions and lemmas for the lemmas
unique_nonDegenerate_dim
, unique_nonDegenerate_simplex
and
unique_nonDegenerate_map
which assert the uniqueness of the
decomposition obtained in the lemma exists_nonDegenerate
.
The following lemmas unique_nonDegenerate_dim
, unique_nonDegenerate_simplex
and
unique_nonDegenerate_map
assert the uniqueness of the decomposition
obtained in the lemma exists_nonDegenerate
.