Documentation

Mathlib.Analysis.CStarAlgebra.ContinuousFunctionalCalculus.Isometric

Isometric continuous functional calculus #

This file adds a class for an isometric continuous functional calculus. This is separate from the usual ContinuousFunctionalCalculus class because we prefer not to require a metric (or a norm) on the algebra for reasons discussed in the module documentation for that file.

Of course, with a metric on the algebra and an isometric continuous functional calculus, the algebra must be a C⋆-algebra already. As such, it may seem like this class is not useful. However, the main purpose is to allow for the continuous functional calculus to be a isometric for the other scalar rings and ℝ≥0 too.

Isometric continuous functional calculus for unital algebras #

An extension of the ContinuousFunctionalCalculus requiring that cfcHom is an isometry.

Instances
    theorem isometry_cfcHom {R : Type u_1} {A : Type u_2} {p : outParam (AProp)} [CommSemiring R] [StarRing R] [MetricSpace R] [TopologicalSemiring R] [ContinuousStar R] [Ring A] [StarRing A] [MetricSpace A] [Algebra R A] [IsometricContinuousFunctionalCalculus R A p] (a : A) (ha : p a := by cfc_tac) :
    Isometry (cfcHom )
    theorem norm_cfcHom {𝕜 : Type u_1} {A : Type u_2} {p : outParam (AProp)} [RCLike 𝕜] [NormedRing A] [StarRing A] [NormedAlgebra 𝕜 A] [IsometricContinuousFunctionalCalculus 𝕜 A p] (a : A) (f : C((spectrum 𝕜 a), 𝕜)) (ha : p a := by cfc_tac) :
    theorem nnnorm_cfcHom {𝕜 : Type u_1} {A : Type u_2} {p : outParam (AProp)} [RCLike 𝕜] [NormedRing A] [StarRing A] [NormedAlgebra 𝕜 A] [IsometricContinuousFunctionalCalculus 𝕜 A p] (a : A) (f : C((spectrum 𝕜 a), 𝕜)) (ha : p a := by cfc_tac) :
    theorem IsGreatest.norm_cfc {𝕜 : Type u_1} {A : Type u_2} {p : outParam (AProp)} [RCLike 𝕜] [NormedRing A] [StarRing A] [NormedAlgebra 𝕜 A] [IsometricContinuousFunctionalCalculus 𝕜 A p] [Nontrivial A] (f : 𝕜𝕜) (a : A) (hf : ContinuousOn f (spectrum 𝕜 a) := by cfc_cont_tac) (ha : p a := by cfc_tac) :
    IsGreatest ((fun (x : 𝕜) => f x) '' spectrum 𝕜 a) cfc f a
    theorem IsGreatest.nnnorm_cfc {𝕜 : Type u_1} {A : Type u_2} {p : outParam (AProp)} [RCLike 𝕜] [NormedRing A] [StarRing A] [NormedAlgebra 𝕜 A] [IsometricContinuousFunctionalCalculus 𝕜 A p] [Nontrivial A] (f : 𝕜𝕜) (a : A) (hf : ContinuousOn f (spectrum 𝕜 a) := by cfc_cont_tac) (ha : p a := by cfc_tac) :
    IsGreatest ((fun (x : 𝕜) => f x‖₊) '' spectrum 𝕜 a) cfc f a‖₊
    theorem norm_apply_le_norm_cfc {𝕜 : Type u_1} {A : Type u_2} {p : outParam (AProp)} [RCLike 𝕜] [NormedRing A] [StarRing A] [NormedAlgebra 𝕜 A] [IsometricContinuousFunctionalCalculus 𝕜 A p] (f : 𝕜𝕜) (a : A) ⦃x : 𝕜 (hx : x spectrum 𝕜 a) (hf : ContinuousOn f (spectrum 𝕜 a) := by cfc_cont_tac) (ha : p a := by cfc_tac) :
    theorem nnnorm_apply_le_nnnorm_cfc {𝕜 : Type u_1} {A : Type u_2} {p : outParam (AProp)} [RCLike 𝕜] [NormedRing A] [StarRing A] [NormedAlgebra 𝕜 A] [IsometricContinuousFunctionalCalculus 𝕜 A p] (f : 𝕜𝕜) (a : A) ⦃x : 𝕜 (hx : x spectrum 𝕜 a) (hf : ContinuousOn f (spectrum 𝕜 a) := by cfc_cont_tac) (ha : p a := by cfc_tac) :
    theorem norm_cfc_le {𝕜 : Type u_1} {A : Type u_2} {p : outParam (AProp)} [RCLike 𝕜] [NormedRing A] [StarRing A] [NormedAlgebra 𝕜 A] [IsometricContinuousFunctionalCalculus 𝕜 A p] {f : 𝕜𝕜} {a : A} {c : } (hc : 0 c) (h : xspectrum 𝕜 a, f x c) :
    theorem norm_cfc_le_iff {𝕜 : Type u_1} {A : Type u_2} {p : outParam (AProp)} [RCLike 𝕜] [NormedRing A] [StarRing A] [NormedAlgebra 𝕜 A] [IsometricContinuousFunctionalCalculus 𝕜 A p] (f : 𝕜𝕜) (a : A) {c : } (hc : 0 c) (hf : ContinuousOn f (spectrum 𝕜 a) := by cfc_cont_tac) (ha : p a := by cfc_tac) :
    cfc f a c xspectrum 𝕜 a, f x c
    theorem norm_cfc_lt {𝕜 : Type u_1} {A : Type u_2} {p : outParam (AProp)} [RCLike 𝕜] [NormedRing A] [StarRing A] [NormedAlgebra 𝕜 A] [IsometricContinuousFunctionalCalculus 𝕜 A p] {f : 𝕜𝕜} {a : A} {c : } (hc : 0 < c) (h : xspectrum 𝕜 a, f x < c) :
    cfc f a < c
    theorem norm_cfc_lt_iff {𝕜 : Type u_1} {A : Type u_2} {p : outParam (AProp)} [RCLike 𝕜] [NormedRing A] [StarRing A] [NormedAlgebra 𝕜 A] [IsometricContinuousFunctionalCalculus 𝕜 A p] (f : 𝕜𝕜) (a : A) {c : } (hc : 0 < c) (hf : ContinuousOn f (spectrum 𝕜 a) := by cfc_cont_tac) (ha : p a := by cfc_tac) :
    cfc f a < c xspectrum 𝕜 a, f x < c
    theorem nnnorm_cfc_le {𝕜 : Type u_1} {A : Type u_2} {p : outParam (AProp)} [RCLike 𝕜] [NormedRing A] [StarRing A] [NormedAlgebra 𝕜 A] [IsometricContinuousFunctionalCalculus 𝕜 A p] {f : 𝕜𝕜} {a : A} (c : NNReal) (h : xspectrum 𝕜 a, f x‖₊ c) :
    theorem nnnorm_cfc_le_iff {𝕜 : Type u_1} {A : Type u_2} {p : outParam (AProp)} [RCLike 𝕜] [NormedRing A] [StarRing A] [NormedAlgebra 𝕜 A] [IsometricContinuousFunctionalCalculus 𝕜 A p] (f : 𝕜𝕜) (a : A) (c : NNReal) (hf : ContinuousOn f (spectrum 𝕜 a) := by cfc_cont_tac) (ha : p a := by cfc_tac) :
    cfc f a‖₊ c xspectrum 𝕜 a, f x‖₊ c
    theorem nnnorm_cfc_lt {𝕜 : Type u_1} {A : Type u_2} {p : outParam (AProp)} [RCLike 𝕜] [NormedRing A] [StarRing A] [NormedAlgebra 𝕜 A] [IsometricContinuousFunctionalCalculus 𝕜 A p] {f : 𝕜𝕜} {a : A} {c : NNReal} (hc : 0 < c) (h : xspectrum 𝕜 a, f x‖₊ < c) :
    theorem nnnorm_cfc_lt_iff {𝕜 : Type u_1} {A : Type u_2} {p : outParam (AProp)} [RCLike 𝕜] [NormedRing A] [StarRing A] [NormedAlgebra 𝕜 A] [IsometricContinuousFunctionalCalculus 𝕜 A p] (f : 𝕜𝕜) (a : A) {c : NNReal} (hc : 0 < c) (hf : ContinuousOn f (spectrum 𝕜 a) := by cfc_cont_tac) (ha : p a := by cfc_tac) :
    cfc f a‖₊ < c xspectrum 𝕜 a, f x‖₊ < c

    Isometric continuous functional calculus for non-unital algebras #

    An extension of the NonUnitalContinuousFunctionalCalculus requiring that cfcₙHom is an isometry.

    Instances
      theorem isometry_cfcₙHom {R : Type u_1} {A : Type u_2} {p : outParam (AProp)} [CommSemiring R] [Nontrivial R] [StarRing R] [MetricSpace R] [TopologicalSemiring R] [ContinuousStar R] [NonUnitalRing A] [StarRing A] [MetricSpace A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A] [NonUnitalIsometricContinuousFunctionalCalculus R A p] (a : A) (ha : p a := by cfc_tac) :
      theorem norm_cfcₙHom {𝕜 : Type u_1} {A : Type u_2} {p : outParam (AProp)} [RCLike 𝕜] [NonUnitalNormedRing A] [StarRing A] [NormedSpace 𝕜 A] [IsScalarTower 𝕜 A A] [SMulCommClass 𝕜 A A] [NonUnitalIsometricContinuousFunctionalCalculus 𝕜 A p] (a : A) (f : ContinuousMapZero (↑(quasispectrum 𝕜 a)) 𝕜) (ha : p a := by cfc_tac) :
      theorem nnnorm_cfcₙHom {𝕜 : Type u_1} {A : Type u_2} {p : outParam (AProp)} [RCLike 𝕜] [NonUnitalNormedRing A] [StarRing A] [NormedSpace 𝕜 A] [IsScalarTower 𝕜 A A] [SMulCommClass 𝕜 A A] [NonUnitalIsometricContinuousFunctionalCalculus 𝕜 A p] (a : A) (f : ContinuousMapZero (↑(quasispectrum 𝕜 a)) 𝕜) (ha : p a := by cfc_tac) :
      theorem IsGreatest.norm_cfcₙ {𝕜 : Type u_1} {A : Type u_2} {p : outParam (AProp)} [RCLike 𝕜] [NonUnitalNormedRing A] [StarRing A] [NormedSpace 𝕜 A] [IsScalarTower 𝕜 A A] [SMulCommClass 𝕜 A A] [NonUnitalIsometricContinuousFunctionalCalculus 𝕜 A p] (f : 𝕜𝕜) (a : A) (hf : ContinuousOn f (quasispectrum 𝕜 a) := by cfc_cont_tac) (hf₀ : f 0 = 0 := by cfc_zero_tac) (ha : p a := by cfc_tac) :
      IsGreatest ((fun (x : 𝕜) => f x) '' quasispectrum 𝕜 a) cfcₙ f a
      theorem IsGreatest.nnnorm_cfcₙ {𝕜 : Type u_1} {A : Type u_2} {p : outParam (AProp)} [RCLike 𝕜] [NonUnitalNormedRing A] [StarRing A] [NormedSpace 𝕜 A] [IsScalarTower 𝕜 A A] [SMulCommClass 𝕜 A A] [NonUnitalIsometricContinuousFunctionalCalculus 𝕜 A p] (f : 𝕜𝕜) (a : A) (hf : ContinuousOn f (quasispectrum 𝕜 a) := by cfc_cont_tac) (hf₀ : f 0 = 0 := by cfc_zero_tac) (ha : p a := by cfc_tac) :
      IsGreatest ((fun (x : 𝕜) => f x‖₊) '' quasispectrum 𝕜 a) cfcₙ f a‖₊
      theorem norm_apply_le_norm_cfcₙ {𝕜 : Type u_1} {A : Type u_2} {p : outParam (AProp)} [RCLike 𝕜] [NonUnitalNormedRing A] [StarRing A] [NormedSpace 𝕜 A] [IsScalarTower 𝕜 A A] [SMulCommClass 𝕜 A A] [NonUnitalIsometricContinuousFunctionalCalculus 𝕜 A p] (f : 𝕜𝕜) (a : A) ⦃x : 𝕜 (hx : x quasispectrum 𝕜 a) (hf : ContinuousOn f (quasispectrum 𝕜 a) := by cfc_cont_tac) (hf₀ : f 0 = 0 := by cfc_zero_tac) (ha : p a := by cfc_tac) :
      theorem nnnorm_apply_le_nnnorm_cfcₙ {𝕜 : Type u_1} {A : Type u_2} {p : outParam (AProp)} [RCLike 𝕜] [NonUnitalNormedRing A] [StarRing A] [NormedSpace 𝕜 A] [IsScalarTower 𝕜 A A] [SMulCommClass 𝕜 A A] [NonUnitalIsometricContinuousFunctionalCalculus 𝕜 A p] (f : 𝕜𝕜) (a : A) ⦃x : 𝕜 (hx : x quasispectrum 𝕜 a) (hf : ContinuousOn f (quasispectrum 𝕜 a) := by cfc_cont_tac) (hf₀ : f 0 = 0 := by cfc_zero_tac) (ha : p a := by cfc_tac) :
      theorem norm_cfcₙ_le {𝕜 : Type u_1} {A : Type u_2} {p : outParam (AProp)} [RCLike 𝕜] [NonUnitalNormedRing A] [StarRing A] [NormedSpace 𝕜 A] [IsScalarTower 𝕜 A A] [SMulCommClass 𝕜 A A] [NonUnitalIsometricContinuousFunctionalCalculus 𝕜 A p] {f : 𝕜𝕜} {a : A} {c : } (h : xquasispectrum 𝕜 a, f x c) :
      theorem norm_cfcₙ_le_iff {𝕜 : Type u_1} {A : Type u_2} {p : outParam (AProp)} [RCLike 𝕜] [NonUnitalNormedRing A] [StarRing A] [NormedSpace 𝕜 A] [IsScalarTower 𝕜 A A] [SMulCommClass 𝕜 A A] [NonUnitalIsometricContinuousFunctionalCalculus 𝕜 A p] (f : 𝕜𝕜) (a : A) (c : ) (hf : ContinuousOn f (quasispectrum 𝕜 a) := by cfc_cont_tac) (hf₀ : f 0 = 0 := by cfc_zero_tac) (ha : p a := by cfc_tac) :
      cfcₙ f a c xquasispectrum 𝕜 a, f x c
      theorem norm_cfcₙ_lt {𝕜 : Type u_1} {A : Type u_2} {p : outParam (AProp)} [RCLike 𝕜] [NonUnitalNormedRing A] [StarRing A] [NormedSpace 𝕜 A] [IsScalarTower 𝕜 A A] [SMulCommClass 𝕜 A A] [NonUnitalIsometricContinuousFunctionalCalculus 𝕜 A p] {f : 𝕜𝕜} {a : A} {c : } (h : xquasispectrum 𝕜 a, f x < c) :
      theorem norm_cfcₙ_lt_iff {𝕜 : Type u_1} {A : Type u_2} {p : outParam (AProp)} [RCLike 𝕜] [NonUnitalNormedRing A] [StarRing A] [NormedSpace 𝕜 A] [IsScalarTower 𝕜 A A] [SMulCommClass 𝕜 A A] [NonUnitalIsometricContinuousFunctionalCalculus 𝕜 A p] (f : 𝕜𝕜) (a : A) (c : ) (hf : ContinuousOn f (quasispectrum 𝕜 a) := by cfc_cont_tac) (hf₀ : f 0 = 0 := by cfc_zero_tac) (ha : p a := by cfc_tac) :
      cfcₙ f a < c xquasispectrum 𝕜 a, f x < c
      theorem nnnorm_cfcₙ_le {𝕜 : Type u_1} {A : Type u_2} {p : outParam (AProp)} [RCLike 𝕜] [NonUnitalNormedRing A] [StarRing A] [NormedSpace 𝕜 A] [IsScalarTower 𝕜 A A] [SMulCommClass 𝕜 A A] [NonUnitalIsometricContinuousFunctionalCalculus 𝕜 A p] {f : 𝕜𝕜} {a : A} {c : NNReal} (h : xquasispectrum 𝕜 a, f x‖₊ c) :
      theorem nnnorm_cfcₙ_le_iff {𝕜 : Type u_1} {A : Type u_2} {p : outParam (AProp)} [RCLike 𝕜] [NonUnitalNormedRing A] [StarRing A] [NormedSpace 𝕜 A] [IsScalarTower 𝕜 A A] [SMulCommClass 𝕜 A A] [NonUnitalIsometricContinuousFunctionalCalculus 𝕜 A p] (f : 𝕜𝕜) (a : A) (c : NNReal) (hf : ContinuousOn f (quasispectrum 𝕜 a) := by cfc_cont_tac) (hf₀ : f 0 = 0 := by cfc_zero_tac) (ha : p a := by cfc_tac) :
      cfcₙ f a‖₊ c xquasispectrum 𝕜 a, f x‖₊ c
      theorem nnnorm_cfcₙ_lt {𝕜 : Type u_1} {A : Type u_2} {p : outParam (AProp)} [RCLike 𝕜] [NonUnitalNormedRing A] [StarRing A] [NormedSpace 𝕜 A] [IsScalarTower 𝕜 A A] [SMulCommClass 𝕜 A A] [NonUnitalIsometricContinuousFunctionalCalculus 𝕜 A p] {f : 𝕜𝕜} {a : A} {c : NNReal} (h : xquasispectrum 𝕜 a, f x‖₊ < c) :
      theorem nnnorm_cfcₙ_lt_iff {𝕜 : Type u_1} {A : Type u_2} {p : outParam (AProp)} [RCLike 𝕜] [NonUnitalNormedRing A] [StarRing A] [NormedSpace 𝕜 A] [IsScalarTower 𝕜 A A] [SMulCommClass 𝕜 A A] [NonUnitalIsometricContinuousFunctionalCalculus 𝕜 A p] (f : 𝕜𝕜) (a : A) (c : NNReal) (hf : ContinuousOn f (quasispectrum 𝕜 a) := by cfc_cont_tac) (hf₀ : f 0 = 0 := by cfc_zero_tac) (ha : p a := by cfc_tac) :
      cfcₙ f a‖₊ < c xquasispectrum 𝕜 a, f x‖₊ < c

      Instances of isometric continuous functional calculi #

      Properties specific to ℝ≥0 #

      theorem apply_le_nnnorm_cfc_nnreal {A : Type u_1} [NormedRing A] [StarRing A] [NormedAlgebra A] [PartialOrder A] [StarOrderedRing A] [IsometricContinuousFunctionalCalculus A IsSelfAdjoint] [NonnegSpectrumClass A] [UniqueContinuousFunctionalCalculus A] (f : NNRealNNReal) (a : A) ⦃x : NNReal (hx : x spectrum NNReal a) (hf : ContinuousOn f (spectrum NNReal a) := by cfc_cont_tac) (ha : 0 a := by cfc_tac) :
      theorem nnnorm_cfc_nnreal_le_iff {A : Type u_1} [NormedRing A] [StarRing A] [NormedAlgebra A] [PartialOrder A] [StarOrderedRing A] [IsometricContinuousFunctionalCalculus A IsSelfAdjoint] [NonnegSpectrumClass A] [UniqueContinuousFunctionalCalculus A] (f : NNRealNNReal) (a : A) (c : NNReal) (hf : ContinuousOn f (spectrum NNReal a) := by cfc_cont_tac) (ha : 0 a := by cfc_tac) :
      cfc f a‖₊ c xspectrum NNReal a, f x c
      theorem nnnorm_cfc_nnreal_lt_iff {A : Type u_1} [NormedRing A] [StarRing A] [NormedAlgebra A] [PartialOrder A] [StarOrderedRing A] [IsometricContinuousFunctionalCalculus A IsSelfAdjoint] [NonnegSpectrumClass A] [UniqueContinuousFunctionalCalculus A] (f : NNRealNNReal) (a : A) {c : NNReal} (hc : 0 < c) (hf : ContinuousOn f (spectrum NNReal a) := by cfc_cont_tac) (ha : 0 a := by cfc_tac) :
      cfc f a‖₊ < c xspectrum NNReal a, f x < c
      theorem apply_le_nnnorm_cfcₙ_nnreal {A : Type u_1} [NonUnitalNormedRing A] [StarRing A] [NormedSpace A] [IsScalarTower A A] [SMulCommClass A A] [PartialOrder A] [StarOrderedRing A] [NonUnitalIsometricContinuousFunctionalCalculus A IsSelfAdjoint] [NonnegSpectrumClass A] [UniqueNonUnitalContinuousFunctionalCalculus A] (f : NNRealNNReal) (a : A) ⦃x : NNReal (hx : x quasispectrum NNReal a) (hf : ContinuousOn f (quasispectrum NNReal a) := by cfc_cont_tac) (hf0 : f 0 = 0 := by cfc_zero_tac) (ha : 0 a := by cfc_tac) :
      theorem nnnorm_cfcₙ_nnreal_le_iff {A : Type u_1} [NonUnitalNormedRing A] [StarRing A] [NormedSpace A] [IsScalarTower A A] [SMulCommClass A A] [PartialOrder A] [StarOrderedRing A] [NonUnitalIsometricContinuousFunctionalCalculus A IsSelfAdjoint] [NonnegSpectrumClass A] [UniqueNonUnitalContinuousFunctionalCalculus A] (f : NNRealNNReal) (a : A) (c : NNReal) (hf : ContinuousOn f (quasispectrum NNReal a) := by cfc_cont_tac) (hf₀ : f 0 = 0 := by cfc_zero_tac) (ha : 0 a := by cfc_tac) :
      cfcₙ f a‖₊ c xquasispectrum NNReal a, f x c
      theorem nnnorm_cfcₙ_nnreal_lt_iff {A : Type u_1} [NonUnitalNormedRing A] [StarRing A] [NormedSpace A] [IsScalarTower A A] [SMulCommClass A A] [PartialOrder A] [StarOrderedRing A] [NonUnitalIsometricContinuousFunctionalCalculus A IsSelfAdjoint] [NonnegSpectrumClass A] [UniqueNonUnitalContinuousFunctionalCalculus A] (f : NNRealNNReal) (a : A) (c : NNReal) (hf : ContinuousOn f (quasispectrum NNReal a) := by cfc_cont_tac) (hf₀ : f 0 = 0 := by cfc_zero_tac) (ha : 0 a := by cfc_tac) :
      cfcₙ f a‖₊ < c xquasispectrum NNReal a, f x < c