Sides of affine subspaces #
This file defines notions of two points being on the same or opposite sides of an affine subspace.
Main definitions #
s.WSameSide x y
: The pointsx
andy
are weakly on the same side of the affine subspaces
.s.SSameSide x y
: The pointsx
andy
are strictly on the same side of the affine subspaces
.s.WOppSide x y
: The pointsx
andy
are weakly on opposite sides of the affine subspaces
.s.SOppSide x y
: The pointsx
andy
are strictly on opposite sides of the affine subspaces
.
def
AffineSubspace.WSameSide
{R : Type u_1}
{V : Type u_2}
{P : Type u_4}
[StrictOrderedCommRing R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
(s : AffineSubspace R P)
(x y : P)
:
The points x
and y
are weakly on the same side of s
.
Instances For
def
AffineSubspace.SSameSide
{R : Type u_1}
{V : Type u_2}
{P : Type u_4}
[StrictOrderedCommRing R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
(s : AffineSubspace R P)
(x y : P)
:
The points x
and y
are strictly on the same side of s
.
Instances For
def
AffineSubspace.WOppSide
{R : Type u_1}
{V : Type u_2}
{P : Type u_4}
[StrictOrderedCommRing R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
(s : AffineSubspace R P)
(x y : P)
:
The points x
and y
are weakly on opposite sides of s
.
Instances For
def
AffineSubspace.SOppSide
{R : Type u_1}
{V : Type u_2}
{P : Type u_4}
[StrictOrderedCommRing R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
(s : AffineSubspace R P)
(x y : P)
:
The points x
and y
are strictly on opposite sides of s
.
Instances For
theorem
AffineSubspace.WSameSide.map
{R : Type u_1}
{V : Type u_2}
{V' : Type u_3}
{P : Type u_4}
{P' : Type u_5}
[StrictOrderedCommRing R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
[AddCommGroup V']
[Module R V']
[AddTorsor V' P']
{s : AffineSubspace R P}
{x y : P}
(h : s.WSameSide x y)
(f : P →ᵃ[R] P')
:
(AffineSubspace.map f s).WSameSide (f x) (f y)
theorem
Function.Injective.wSameSide_map_iff
{R : Type u_1}
{V : Type u_2}
{V' : Type u_3}
{P : Type u_4}
{P' : Type u_5}
[StrictOrderedCommRing R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
[AddCommGroup V']
[Module R V']
[AddTorsor V' P']
{s : AffineSubspace R P}
{x y : P}
{f : P →ᵃ[R] P'}
(hf : Injective ⇑f)
:
(AffineSubspace.map f s).WSameSide (f x) (f y) ↔ s.WSameSide x y
theorem
Function.Injective.sSameSide_map_iff
{R : Type u_1}
{V : Type u_2}
{V' : Type u_3}
{P : Type u_4}
{P' : Type u_5}
[StrictOrderedCommRing R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
[AddCommGroup V']
[Module R V']
[AddTorsor V' P']
{s : AffineSubspace R P}
{x y : P}
{f : P →ᵃ[R] P'}
(hf : Injective ⇑f)
:
(AffineSubspace.map f s).SSameSide (f x) (f y) ↔ s.SSameSide x y
@[simp]
theorem
AffineEquiv.wSameSide_map_iff
{R : Type u_1}
{V : Type u_2}
{V' : Type u_3}
{P : Type u_4}
{P' : Type u_5}
[StrictOrderedCommRing R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
[AddCommGroup V']
[Module R V']
[AddTorsor V' P']
{s : AffineSubspace R P}
{x y : P}
(f : P ≃ᵃ[R] P')
:
(AffineSubspace.map (↑f) s).WSameSide (f x) (f y) ↔ s.WSameSide x y
@[simp]
theorem
AffineEquiv.sSameSide_map_iff
{R : Type u_1}
{V : Type u_2}
{V' : Type u_3}
{P : Type u_4}
{P' : Type u_5}
[StrictOrderedCommRing R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
[AddCommGroup V']
[Module R V']
[AddTorsor V' P']
{s : AffineSubspace R P}
{x y : P}
(f : P ≃ᵃ[R] P')
:
(AffineSubspace.map (↑f) s).SSameSide (f x) (f y) ↔ s.SSameSide x y
theorem
AffineSubspace.WOppSide.map
{R : Type u_1}
{V : Type u_2}
{V' : Type u_3}
{P : Type u_4}
{P' : Type u_5}
[StrictOrderedCommRing R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
[AddCommGroup V']
[Module R V']
[AddTorsor V' P']
{s : AffineSubspace R P}
{x y : P}
(h : s.WOppSide x y)
(f : P →ᵃ[R] P')
:
(AffineSubspace.map f s).WOppSide (f x) (f y)
theorem
Function.Injective.wOppSide_map_iff
{R : Type u_1}
{V : Type u_2}
{V' : Type u_3}
{P : Type u_4}
{P' : Type u_5}
[StrictOrderedCommRing R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
[AddCommGroup V']
[Module R V']
[AddTorsor V' P']
{s : AffineSubspace R P}
{x y : P}
{f : P →ᵃ[R] P'}
(hf : Injective ⇑f)
:
(AffineSubspace.map f s).WOppSide (f x) (f y) ↔ s.WOppSide x y
theorem
Function.Injective.sOppSide_map_iff
{R : Type u_1}
{V : Type u_2}
{V' : Type u_3}
{P : Type u_4}
{P' : Type u_5}
[StrictOrderedCommRing R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
[AddCommGroup V']
[Module R V']
[AddTorsor V' P']
{s : AffineSubspace R P}
{x y : P}
{f : P →ᵃ[R] P'}
(hf : Injective ⇑f)
:
(AffineSubspace.map f s).SOppSide (f x) (f y) ↔ s.SOppSide x y
@[simp]
theorem
AffineEquiv.wOppSide_map_iff
{R : Type u_1}
{V : Type u_2}
{V' : Type u_3}
{P : Type u_4}
{P' : Type u_5}
[StrictOrderedCommRing R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
[AddCommGroup V']
[Module R V']
[AddTorsor V' P']
{s : AffineSubspace R P}
{x y : P}
(f : P ≃ᵃ[R] P')
:
(AffineSubspace.map (↑f) s).WOppSide (f x) (f y) ↔ s.WOppSide x y
@[simp]
theorem
AffineEquiv.sOppSide_map_iff
{R : Type u_1}
{V : Type u_2}
{V' : Type u_3}
{P : Type u_4}
{P' : Type u_5}
[StrictOrderedCommRing R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
[AddCommGroup V']
[Module R V']
[AddTorsor V' P']
{s : AffineSubspace R P}
{x y : P}
(f : P ≃ᵃ[R] P')
:
(AffineSubspace.map (↑f) s).SOppSide (f x) (f y) ↔ s.SOppSide x y
theorem
AffineSubspace.WSameSide.nonempty
{R : Type u_1}
{V : Type u_2}
{P : Type u_4}
[StrictOrderedCommRing R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
{s : AffineSubspace R P}
{x y : P}
(h : s.WSameSide x y)
:
(↑s).Nonempty
theorem
AffineSubspace.SSameSide.nonempty
{R : Type u_1}
{V : Type u_2}
{P : Type u_4}
[StrictOrderedCommRing R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
{s : AffineSubspace R P}
{x y : P}
(h : s.SSameSide x y)
:
(↑s).Nonempty
theorem
AffineSubspace.WOppSide.nonempty
{R : Type u_1}
{V : Type u_2}
{P : Type u_4}
[StrictOrderedCommRing R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
{s : AffineSubspace R P}
{x y : P}
(h : s.WOppSide x y)
:
(↑s).Nonempty
theorem
AffineSubspace.SOppSide.nonempty
{R : Type u_1}
{V : Type u_2}
{P : Type u_4}
[StrictOrderedCommRing R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
{s : AffineSubspace R P}
{x y : P}
(h : s.SOppSide x y)
:
(↑s).Nonempty
theorem
AffineSubspace.SSameSide.wSameSide
{R : Type u_1}
{V : Type u_2}
{P : Type u_4}
[StrictOrderedCommRing R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
{s : AffineSubspace R P}
{x y : P}
(h : s.SSameSide x y)
:
s.WSameSide x y
theorem
AffineSubspace.SSameSide.left_not_mem
{R : Type u_1}
{V : Type u_2}
{P : Type u_4}
[StrictOrderedCommRing R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
{s : AffineSubspace R P}
{x y : P}
(h : s.SSameSide x y)
:
x ∉ s
theorem
AffineSubspace.SSameSide.right_not_mem
{R : Type u_1}
{V : Type u_2}
{P : Type u_4}
[StrictOrderedCommRing R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
{s : AffineSubspace R P}
{x y : P}
(h : s.SSameSide x y)
:
y ∉ s
theorem
AffineSubspace.SOppSide.wOppSide
{R : Type u_1}
{V : Type u_2}
{P : Type u_4}
[StrictOrderedCommRing R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
{s : AffineSubspace R P}
{x y : P}
(h : s.SOppSide x y)
:
s.WOppSide x y
theorem
AffineSubspace.SOppSide.left_not_mem
{R : Type u_1}
{V : Type u_2}
{P : Type u_4}
[StrictOrderedCommRing R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
{s : AffineSubspace R P}
{x y : P}
(h : s.SOppSide x y)
:
x ∉ s
theorem
AffineSubspace.SOppSide.right_not_mem
{R : Type u_1}
{V : Type u_2}
{P : Type u_4}
[StrictOrderedCommRing R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
{s : AffineSubspace R P}
{x y : P}
(h : s.SOppSide x y)
:
y ∉ s
theorem
AffineSubspace.wSameSide_comm
{R : Type u_1}
{V : Type u_2}
{P : Type u_4}
[StrictOrderedCommRing R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
{s : AffineSubspace R P}
{x y : P}
:
s.WSameSide x y ↔ s.WSameSide y x
theorem
AffineSubspace.WSameSide.symm
{R : Type u_1}
{V : Type u_2}
{P : Type u_4}
[StrictOrderedCommRing R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
{s : AffineSubspace R P}
{x y : P}
:
s.WSameSide x y → s.WSameSide y x
Alias of the forward direction of AffineSubspace.wSameSide_comm
.
theorem
AffineSubspace.sSameSide_comm
{R : Type u_1}
{V : Type u_2}
{P : Type u_4}
[StrictOrderedCommRing R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
{s : AffineSubspace R P}
{x y : P}
:
s.SSameSide x y ↔ s.SSameSide y x
theorem
AffineSubspace.SSameSide.symm
{R : Type u_1}
{V : Type u_2}
{P : Type u_4}
[StrictOrderedCommRing R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
{s : AffineSubspace R P}
{x y : P}
:
s.SSameSide x y → s.SSameSide y x
Alias of the forward direction of AffineSubspace.sSameSide_comm
.
theorem
AffineSubspace.wOppSide_comm
{R : Type u_1}
{V : Type u_2}
{P : Type u_4}
[StrictOrderedCommRing R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
{s : AffineSubspace R P}
{x y : P}
:
s.WOppSide x y ↔ s.WOppSide y x
theorem
AffineSubspace.WOppSide.symm
{R : Type u_1}
{V : Type u_2}
{P : Type u_4}
[StrictOrderedCommRing R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
{s : AffineSubspace R P}
{x y : P}
:
s.WOppSide x y → s.WOppSide y x
Alias of the forward direction of AffineSubspace.wOppSide_comm
.
theorem
AffineSubspace.sOppSide_comm
{R : Type u_1}
{V : Type u_2}
{P : Type u_4}
[StrictOrderedCommRing R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
{s : AffineSubspace R P}
{x y : P}
:
s.SOppSide x y ↔ s.SOppSide y x
theorem
AffineSubspace.SOppSide.symm
{R : Type u_1}
{V : Type u_2}
{P : Type u_4}
[StrictOrderedCommRing R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
{s : AffineSubspace R P}
{x y : P}
:
s.SOppSide x y → s.SOppSide y x
Alias of the forward direction of AffineSubspace.sOppSide_comm
.
theorem
AffineSubspace.not_wSameSide_bot
{R : Type u_1}
{V : Type u_2}
{P : Type u_4}
[StrictOrderedCommRing R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
(x y : P)
:
theorem
AffineSubspace.not_sSameSide_bot
{R : Type u_1}
{V : Type u_2}
{P : Type u_4}
[StrictOrderedCommRing R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
(x y : P)
:
theorem
AffineSubspace.not_wOppSide_bot
{R : Type u_1}
{V : Type u_2}
{P : Type u_4}
[StrictOrderedCommRing R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
(x y : P)
:
theorem
AffineSubspace.not_sOppSide_bot
{R : Type u_1}
{V : Type u_2}
{P : Type u_4}
[StrictOrderedCommRing R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
(x y : P)
:
@[simp]
theorem
AffineSubspace.wSameSide_self_iff
{R : Type u_1}
{V : Type u_2}
{P : Type u_4}
[StrictOrderedCommRing R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
{s : AffineSubspace R P}
{x : P}
:
s.WSameSide x x ↔ (↑s).Nonempty
theorem
AffineSubspace.sSameSide_self_iff
{R : Type u_1}
{V : Type u_2}
{P : Type u_4}
[StrictOrderedCommRing R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
{s : AffineSubspace R P}
{x : P}
:
theorem
AffineSubspace.wSameSide_of_left_mem
{R : Type u_1}
{V : Type u_2}
{P : Type u_4}
[StrictOrderedCommRing R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
{s : AffineSubspace R P}
{x : P}
(y : P)
(hx : x ∈ s)
:
s.WSameSide x y
theorem
AffineSubspace.wSameSide_of_right_mem
{R : Type u_1}
{V : Type u_2}
{P : Type u_4}
[StrictOrderedCommRing R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
{s : AffineSubspace R P}
(x : P)
{y : P}
(hy : y ∈ s)
:
s.WSameSide x y
theorem
AffineSubspace.wOppSide_of_left_mem
{R : Type u_1}
{V : Type u_2}
{P : Type u_4}
[StrictOrderedCommRing R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
{s : AffineSubspace R P}
{x : P}
(y : P)
(hx : x ∈ s)
:
s.WOppSide x y
theorem
AffineSubspace.wOppSide_of_right_mem
{R : Type u_1}
{V : Type u_2}
{P : Type u_4}
[StrictOrderedCommRing R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
{s : AffineSubspace R P}
(x : P)
{y : P}
(hy : y ∈ s)
:
s.WOppSide x y
theorem
AffineSubspace.wSameSide_vadd_left_iff
{R : Type u_1}
{V : Type u_2}
{P : Type u_4}
[StrictOrderedCommRing R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
{s : AffineSubspace R P}
{x y : P}
{v : V}
(hv : v ∈ s.direction)
:
theorem
AffineSubspace.wSameSide_vadd_right_iff
{R : Type u_1}
{V : Type u_2}
{P : Type u_4}
[StrictOrderedCommRing R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
{s : AffineSubspace R P}
{x y : P}
{v : V}
(hv : v ∈ s.direction)
:
theorem
AffineSubspace.sSameSide_vadd_left_iff
{R : Type u_1}
{V : Type u_2}
{P : Type u_4}
[StrictOrderedCommRing R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
{s : AffineSubspace R P}
{x y : P}
{v : V}
(hv : v ∈ s.direction)
:
theorem
AffineSubspace.sSameSide_vadd_right_iff
{R : Type u_1}
{V : Type u_2}
{P : Type u_4}
[StrictOrderedCommRing R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
{s : AffineSubspace R P}
{x y : P}
{v : V}
(hv : v ∈ s.direction)
:
theorem
AffineSubspace.wOppSide_vadd_left_iff
{R : Type u_1}
{V : Type u_2}
{P : Type u_4}
[StrictOrderedCommRing R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
{s : AffineSubspace R P}
{x y : P}
{v : V}
(hv : v ∈ s.direction)
:
theorem
AffineSubspace.wOppSide_vadd_right_iff
{R : Type u_1}
{V : Type u_2}
{P : Type u_4}
[StrictOrderedCommRing R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
{s : AffineSubspace R P}
{x y : P}
{v : V}
(hv : v ∈ s.direction)
:
theorem
AffineSubspace.sOppSide_vadd_left_iff
{R : Type u_1}
{V : Type u_2}
{P : Type u_4}
[StrictOrderedCommRing R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
{s : AffineSubspace R P}
{x y : P}
{v : V}
(hv : v ∈ s.direction)
:
theorem
AffineSubspace.sOppSide_vadd_right_iff
{R : Type u_1}
{V : Type u_2}
{P : Type u_4}
[StrictOrderedCommRing R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
{s : AffineSubspace R P}
{x y : P}
{v : V}
(hv : v ∈ s.direction)
:
theorem
AffineSubspace.wSameSide_smul_vsub_vadd_left
{R : Type u_1}
{V : Type u_2}
{P : Type u_4}
[StrictOrderedCommRing R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
{s : AffineSubspace R P}
{p₁ p₂ : P}
(x : P)
(hp₁ : p₁ ∈ s)
(hp₂ : p₂ ∈ s)
{t : R}
(ht : 0 ≤ t)
:
theorem
AffineSubspace.wSameSide_smul_vsub_vadd_right
{R : Type u_1}
{V : Type u_2}
{P : Type u_4}
[StrictOrderedCommRing R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
{s : AffineSubspace R P}
{p₁ p₂ : P}
(x : P)
(hp₁ : p₁ ∈ s)
(hp₂ : p₂ ∈ s)
{t : R}
(ht : 0 ≤ t)
:
theorem
AffineSubspace.wSameSide_lineMap_left
{R : Type u_1}
{V : Type u_2}
{P : Type u_4}
[StrictOrderedCommRing R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
{s : AffineSubspace R P}
{x : P}
(y : P)
(h : x ∈ s)
{t : R}
(ht : 0 ≤ t)
:
s.WSameSide ((AffineMap.lineMap x y) t) y
theorem
AffineSubspace.wSameSide_lineMap_right
{R : Type u_1}
{V : Type u_2}
{P : Type u_4}
[StrictOrderedCommRing R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
{s : AffineSubspace R P}
{x : P}
(y : P)
(h : x ∈ s)
{t : R}
(ht : 0 ≤ t)
:
s.WSameSide y ((AffineMap.lineMap x y) t)
theorem
AffineSubspace.wOppSide_smul_vsub_vadd_left
{R : Type u_1}
{V : Type u_2}
{P : Type u_4}
[StrictOrderedCommRing R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
{s : AffineSubspace R P}
{p₁ p₂ : P}
(x : P)
(hp₁ : p₁ ∈ s)
(hp₂ : p₂ ∈ s)
{t : R}
(ht : t ≤ 0)
:
theorem
AffineSubspace.wOppSide_smul_vsub_vadd_right
{R : Type u_1}
{V : Type u_2}
{P : Type u_4}
[StrictOrderedCommRing R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
{s : AffineSubspace R P}
{p₁ p₂ : P}
(x : P)
(hp₁ : p₁ ∈ s)
(hp₂ : p₂ ∈ s)
{t : R}
(ht : t ≤ 0)
:
theorem
AffineSubspace.wOppSide_lineMap_left
{R : Type u_1}
{V : Type u_2}
{P : Type u_4}
[StrictOrderedCommRing R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
{s : AffineSubspace R P}
{x : P}
(y : P)
(h : x ∈ s)
{t : R}
(ht : t ≤ 0)
:
s.WOppSide ((AffineMap.lineMap x y) t) y
theorem
AffineSubspace.wOppSide_lineMap_right
{R : Type u_1}
{V : Type u_2}
{P : Type u_4}
[StrictOrderedCommRing R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
{s : AffineSubspace R P}
{x : P}
(y : P)
(h : x ∈ s)
{t : R}
(ht : t ≤ 0)
:
s.WOppSide y ((AffineMap.lineMap x y) t)
theorem
Wbtw.wSameSide₂₃
{R : Type u_1}
{V : Type u_2}
{P : Type u_4}
[StrictOrderedCommRing R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
{s : AffineSubspace R P}
{x y z : P}
(h : Wbtw R x y z)
(hx : x ∈ s)
:
s.WSameSide y z
theorem
Wbtw.wSameSide₃₂
{R : Type u_1}
{V : Type u_2}
{P : Type u_4}
[StrictOrderedCommRing R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
{s : AffineSubspace R P}
{x y z : P}
(h : Wbtw R x y z)
(hx : x ∈ s)
:
s.WSameSide z y
theorem
Wbtw.wSameSide₁₂
{R : Type u_1}
{V : Type u_2}
{P : Type u_4}
[StrictOrderedCommRing R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
{s : AffineSubspace R P}
{x y z : P}
(h : Wbtw R x y z)
(hz : z ∈ s)
:
s.WSameSide x y
theorem
Wbtw.wSameSide₂₁
{R : Type u_1}
{V : Type u_2}
{P : Type u_4}
[StrictOrderedCommRing R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
{s : AffineSubspace R P}
{x y z : P}
(h : Wbtw R x y z)
(hz : z ∈ s)
:
s.WSameSide y x
theorem
Wbtw.wOppSide₁₃
{R : Type u_1}
{V : Type u_2}
{P : Type u_4}
[StrictOrderedCommRing R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
{s : AffineSubspace R P}
{x y z : P}
(h : Wbtw R x y z)
(hy : y ∈ s)
:
s.WOppSide x z
theorem
Wbtw.wOppSide₃₁
{R : Type u_1}
{V : Type u_2}
{P : Type u_4}
[StrictOrderedCommRing R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
{s : AffineSubspace R P}
{x y z : P}
(h : Wbtw R x y z)
(hy : y ∈ s)
:
s.WOppSide z x
@[simp]
theorem
AffineSubspace.wOppSide_self_iff
{R : Type u_1}
{V : Type u_2}
{P : Type u_4}
[LinearOrderedField R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
{s : AffineSubspace R P}
{x : P}
:
theorem
AffineSubspace.not_sOppSide_self
{R : Type u_1}
{V : Type u_2}
{P : Type u_4}
[LinearOrderedField R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
(s : AffineSubspace R P)
(x : P)
:
¬s.SOppSide x x
theorem
AffineSubspace.wSameSide_iff_exists_left
{R : Type u_1}
{V : Type u_2}
{P : Type u_4}
[LinearOrderedField R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
{s : AffineSubspace R P}
{x y p₁ : P}
(h : p₁ ∈ s)
:
theorem
AffineSubspace.wSameSide_iff_exists_right
{R : Type u_1}
{V : Type u_2}
{P : Type u_4}
[LinearOrderedField R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
{s : AffineSubspace R P}
{x y p₂ : P}
(h : p₂ ∈ s)
:
theorem
AffineSubspace.sSameSide_iff_exists_left
{R : Type u_1}
{V : Type u_2}
{P : Type u_4}
[LinearOrderedField R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
{s : AffineSubspace R P}
{x y p₁ : P}
(h : p₁ ∈ s)
:
theorem
AffineSubspace.sSameSide_iff_exists_right
{R : Type u_1}
{V : Type u_2}
{P : Type u_4}
[LinearOrderedField R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
{s : AffineSubspace R P}
{x y p₂ : P}
(h : p₂ ∈ s)
:
theorem
AffineSubspace.wOppSide_iff_exists_left
{R : Type u_1}
{V : Type u_2}
{P : Type u_4}
[LinearOrderedField R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
{s : AffineSubspace R P}
{x y p₁ : P}
(h : p₁ ∈ s)
:
theorem
AffineSubspace.wOppSide_iff_exists_right
{R : Type u_1}
{V : Type u_2}
{P : Type u_4}
[LinearOrderedField R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
{s : AffineSubspace R P}
{x y p₂ : P}
(h : p₂ ∈ s)
:
theorem
AffineSubspace.sOppSide_iff_exists_left
{R : Type u_1}
{V : Type u_2}
{P : Type u_4}
[LinearOrderedField R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
{s : AffineSubspace R P}
{x y p₁ : P}
(h : p₁ ∈ s)
:
theorem
AffineSubspace.sOppSide_iff_exists_right
{R : Type u_1}
{V : Type u_2}
{P : Type u_4}
[LinearOrderedField R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
{s : AffineSubspace R P}
{x y p₂ : P}
(h : p₂ ∈ s)
:
theorem
AffineSubspace.WSameSide.trans
{R : Type u_1}
{V : Type u_2}
{P : Type u_4}
[LinearOrderedField R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
{s : AffineSubspace R P}
{x y z : P}
(hxy : s.WSameSide x y)
(hyz : s.WSameSide y z)
(hy : y ∉ s)
:
s.WSameSide x z
theorem
AffineSubspace.WSameSide.trans_sSameSide
{R : Type u_1}
{V : Type u_2}
{P : Type u_4}
[LinearOrderedField R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
{s : AffineSubspace R P}
{x y z : P}
(hxy : s.WSameSide x y)
(hyz : s.SSameSide y z)
:
s.WSameSide x z
theorem
AffineSubspace.WSameSide.trans_wOppSide
{R : Type u_1}
{V : Type u_2}
{P : Type u_4}
[LinearOrderedField R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
{s : AffineSubspace R P}
{x y z : P}
(hxy : s.WSameSide x y)
(hyz : s.WOppSide y z)
(hy : y ∉ s)
:
s.WOppSide x z
theorem
AffineSubspace.WSameSide.trans_sOppSide
{R : Type u_1}
{V : Type u_2}
{P : Type u_4}
[LinearOrderedField R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
{s : AffineSubspace R P}
{x y z : P}
(hxy : s.WSameSide x y)
(hyz : s.SOppSide y z)
:
s.WOppSide x z
theorem
AffineSubspace.SSameSide.trans_wSameSide
{R : Type u_1}
{V : Type u_2}
{P : Type u_4}
[LinearOrderedField R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
{s : AffineSubspace R P}
{x y z : P}
(hxy : s.SSameSide x y)
(hyz : s.WSameSide y z)
:
s.WSameSide x z
theorem
AffineSubspace.SSameSide.trans
{R : Type u_1}
{V : Type u_2}
{P : Type u_4}
[LinearOrderedField R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
{s : AffineSubspace R P}
{x y z : P}
(hxy : s.SSameSide x y)
(hyz : s.SSameSide y z)
:
s.SSameSide x z
theorem
AffineSubspace.SSameSide.trans_wOppSide
{R : Type u_1}
{V : Type u_2}
{P : Type u_4}
[LinearOrderedField R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
{s : AffineSubspace R P}
{x y z : P}
(hxy : s.SSameSide x y)
(hyz : s.WOppSide y z)
:
s.WOppSide x z
theorem
AffineSubspace.SSameSide.trans_sOppSide
{R : Type u_1}
{V : Type u_2}
{P : Type u_4}
[LinearOrderedField R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
{s : AffineSubspace R P}
{x y z : P}
(hxy : s.SSameSide x y)
(hyz : s.SOppSide y z)
:
s.SOppSide x z
theorem
AffineSubspace.WOppSide.trans_wSameSide
{R : Type u_1}
{V : Type u_2}
{P : Type u_4}
[LinearOrderedField R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
{s : AffineSubspace R P}
{x y z : P}
(hxy : s.WOppSide x y)
(hyz : s.WSameSide y z)
(hy : y ∉ s)
:
s.WOppSide x z
theorem
AffineSubspace.WOppSide.trans_sSameSide
{R : Type u_1}
{V : Type u_2}
{P : Type u_4}
[LinearOrderedField R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
{s : AffineSubspace R P}
{x y z : P}
(hxy : s.WOppSide x y)
(hyz : s.SSameSide y z)
:
s.WOppSide x z
theorem
AffineSubspace.WOppSide.trans
{R : Type u_1}
{V : Type u_2}
{P : Type u_4}
[LinearOrderedField R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
{s : AffineSubspace R P}
{x y z : P}
(hxy : s.WOppSide x y)
(hyz : s.WOppSide y z)
(hy : y ∉ s)
:
s.WSameSide x z
theorem
AffineSubspace.WOppSide.trans_sOppSide
{R : Type u_1}
{V : Type u_2}
{P : Type u_4}
[LinearOrderedField R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
{s : AffineSubspace R P}
{x y z : P}
(hxy : s.WOppSide x y)
(hyz : s.SOppSide y z)
:
s.WSameSide x z
theorem
AffineSubspace.SOppSide.trans_wSameSide
{R : Type u_1}
{V : Type u_2}
{P : Type u_4}
[LinearOrderedField R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
{s : AffineSubspace R P}
{x y z : P}
(hxy : s.SOppSide x y)
(hyz : s.WSameSide y z)
:
s.WOppSide x z
theorem
AffineSubspace.SOppSide.trans_sSameSide
{R : Type u_1}
{V : Type u_2}
{P : Type u_4}
[LinearOrderedField R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
{s : AffineSubspace R P}
{x y z : P}
(hxy : s.SOppSide x y)
(hyz : s.SSameSide y z)
:
s.SOppSide x z
theorem
AffineSubspace.SOppSide.trans_wOppSide
{R : Type u_1}
{V : Type u_2}
{P : Type u_4}
[LinearOrderedField R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
{s : AffineSubspace R P}
{x y z : P}
(hxy : s.SOppSide x y)
(hyz : s.WOppSide y z)
:
s.WSameSide x z
theorem
AffineSubspace.SOppSide.trans
{R : Type u_1}
{V : Type u_2}
{P : Type u_4}
[LinearOrderedField R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
{s : AffineSubspace R P}
{x y z : P}
(hxy : s.SOppSide x y)
(hyz : s.SOppSide y z)
:
s.SSameSide x z
theorem
AffineSubspace.wSameSide_and_wOppSide_iff
{R : Type u_1}
{V : Type u_2}
{P : Type u_4}
[LinearOrderedField R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
{s : AffineSubspace R P}
{x y : P}
:
theorem
AffineSubspace.WSameSide.not_sOppSide
{R : Type u_1}
{V : Type u_2}
{P : Type u_4}
[LinearOrderedField R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
{s : AffineSubspace R P}
{x y : P}
(h : s.WSameSide x y)
:
¬s.SOppSide x y
theorem
AffineSubspace.SSameSide.not_wOppSide
{R : Type u_1}
{V : Type u_2}
{P : Type u_4}
[LinearOrderedField R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
{s : AffineSubspace R P}
{x y : P}
(h : s.SSameSide x y)
:
¬s.WOppSide x y
theorem
AffineSubspace.SSameSide.not_sOppSide
{R : Type u_1}
{V : Type u_2}
{P : Type u_4}
[LinearOrderedField R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
{s : AffineSubspace R P}
{x y : P}
(h : s.SSameSide x y)
:
¬s.SOppSide x y
theorem
AffineSubspace.WOppSide.not_sSameSide
{R : Type u_1}
{V : Type u_2}
{P : Type u_4}
[LinearOrderedField R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
{s : AffineSubspace R P}
{x y : P}
(h : s.WOppSide x y)
:
¬s.SSameSide x y
theorem
AffineSubspace.SOppSide.not_wSameSide
{R : Type u_1}
{V : Type u_2}
{P : Type u_4}
[LinearOrderedField R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
{s : AffineSubspace R P}
{x y : P}
(h : s.SOppSide x y)
:
¬s.WSameSide x y
theorem
AffineSubspace.SOppSide.not_sSameSide
{R : Type u_1}
{V : Type u_2}
{P : Type u_4}
[LinearOrderedField R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
{s : AffineSubspace R P}
{x y : P}
(h : s.SOppSide x y)
:
¬s.SSameSide x y
theorem
AffineSubspace.wOppSide_iff_exists_wbtw
{R : Type u_1}
{V : Type u_2}
{P : Type u_4}
[LinearOrderedField R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
{s : AffineSubspace R P}
{x y : P}
:
theorem
AffineSubspace.SOppSide.exists_sbtw
{R : Type u_1}
{V : Type u_2}
{P : Type u_4}
[LinearOrderedField R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
{s : AffineSubspace R P}
{x y : P}
(h : s.SOppSide x y)
:
∃ p ∈ s, Sbtw R x p y
theorem
Sbtw.sOppSide_of_not_mem_of_mem
{R : Type u_1}
{V : Type u_2}
{P : Type u_4}
[LinearOrderedField R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
{s : AffineSubspace R P}
{x y z : P}
(h : Sbtw R x y z)
(hx : x ∉ s)
(hy : y ∈ s)
:
s.SOppSide x z
theorem
AffineSubspace.sSameSide_smul_vsub_vadd_left
{R : Type u_1}
{V : Type u_2}
{P : Type u_4}
[LinearOrderedField R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
{s : AffineSubspace R P}
{x p₁ p₂ : P}
(hx : x ∉ s)
(hp₁ : p₁ ∈ s)
(hp₂ : p₂ ∈ s)
{t : R}
(ht : 0 < t)
:
theorem
AffineSubspace.sSameSide_smul_vsub_vadd_right
{R : Type u_1}
{V : Type u_2}
{P : Type u_4}
[LinearOrderedField R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
{s : AffineSubspace R P}
{x p₁ p₂ : P}
(hx : x ∉ s)
(hp₁ : p₁ ∈ s)
(hp₂ : p₂ ∈ s)
{t : R}
(ht : 0 < t)
:
theorem
AffineSubspace.sSameSide_lineMap_left
{R : Type u_1}
{V : Type u_2}
{P : Type u_4}
[LinearOrderedField R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
{s : AffineSubspace R P}
{x y : P}
(hx : x ∈ s)
(hy : y ∉ s)
{t : R}
(ht : 0 < t)
:
s.SSameSide ((AffineMap.lineMap x y) t) y
theorem
AffineSubspace.sSameSide_lineMap_right
{R : Type u_1}
{V : Type u_2}
{P : Type u_4}
[LinearOrderedField R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
{s : AffineSubspace R P}
{x y : P}
(hx : x ∈ s)
(hy : y ∉ s)
{t : R}
(ht : 0 < t)
:
s.SSameSide y ((AffineMap.lineMap x y) t)
theorem
AffineSubspace.sOppSide_smul_vsub_vadd_left
{R : Type u_1}
{V : Type u_2}
{P : Type u_4}
[LinearOrderedField R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
{s : AffineSubspace R P}
{x p₁ p₂ : P}
(hx : x ∉ s)
(hp₁ : p₁ ∈ s)
(hp₂ : p₂ ∈ s)
{t : R}
(ht : t < 0)
:
theorem
AffineSubspace.sOppSide_smul_vsub_vadd_right
{R : Type u_1}
{V : Type u_2}
{P : Type u_4}
[LinearOrderedField R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
{s : AffineSubspace R P}
{x p₁ p₂ : P}
(hx : x ∉ s)
(hp₁ : p₁ ∈ s)
(hp₂ : p₂ ∈ s)
{t : R}
(ht : t < 0)
:
theorem
AffineSubspace.sOppSide_lineMap_left
{R : Type u_1}
{V : Type u_2}
{P : Type u_4}
[LinearOrderedField R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
{s : AffineSubspace R P}
{x y : P}
(hx : x ∈ s)
(hy : y ∉ s)
{t : R}
(ht : t < 0)
:
s.SOppSide ((AffineMap.lineMap x y) t) y
theorem
AffineSubspace.sOppSide_lineMap_right
{R : Type u_1}
{V : Type u_2}
{P : Type u_4}
[LinearOrderedField R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
{s : AffineSubspace R P}
{x y : P}
(hx : x ∈ s)
(hy : y ∉ s)
{t : R}
(ht : t < 0)
:
s.SOppSide y ((AffineMap.lineMap x y) t)
theorem
AffineSubspace.setOf_wSameSide_eq_image2
{R : Type u_1}
{V : Type u_2}
{P : Type u_4}
[LinearOrderedField R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
{s : AffineSubspace R P}
{x p : P}
(hx : x ∉ s)
(hp : p ∈ s)
:
theorem
AffineSubspace.setOf_sSameSide_eq_image2
{R : Type u_1}
{V : Type u_2}
{P : Type u_4}
[LinearOrderedField R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
{s : AffineSubspace R P}
{x p : P}
(hx : x ∉ s)
(hp : p ∈ s)
:
theorem
AffineSubspace.setOf_wOppSide_eq_image2
{R : Type u_1}
{V : Type u_2}
{P : Type u_4}
[LinearOrderedField R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
{s : AffineSubspace R P}
{x p : P}
(hx : x ∉ s)
(hp : p ∈ s)
:
theorem
AffineSubspace.setOf_sOppSide_eq_image2
{R : Type u_1}
{V : Type u_2}
{P : Type u_4}
[LinearOrderedField R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
{s : AffineSubspace R P}
{x p : P}
(hx : x ∉ s)
(hp : p ∈ s)
:
theorem
AffineSubspace.wOppSide_pointReflection
{R : Type u_1}
{V : Type u_2}
{P : Type u_4}
[LinearOrderedField R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
{s : AffineSubspace R P}
{x : P}
(y : P)
(hx : x ∈ s)
:
s.WOppSide y ((AffineEquiv.pointReflection R x) y)
theorem
AffineSubspace.sOppSide_pointReflection
{R : Type u_1}
{V : Type u_2}
{P : Type u_4}
[LinearOrderedField R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
{s : AffineSubspace R P}
{x y : P}
(hx : x ∈ s)
(hy : y ∉ s)
:
s.SOppSide y ((AffineEquiv.pointReflection R x) y)
theorem
AffineSubspace.isConnected_setOf_wSameSide
{V : Type u_2}
{P : Type u_4}
[SeminormedAddCommGroup V]
[NormedSpace ℝ V]
[PseudoMetricSpace P]
[NormedAddTorsor V P]
{s : AffineSubspace ℝ P}
(x : P)
(h : (↑s).Nonempty)
:
IsConnected {y : P | s.WSameSide x y}
theorem
AffineSubspace.isPreconnected_setOf_wSameSide
{V : Type u_2}
{P : Type u_4}
[SeminormedAddCommGroup V]
[NormedSpace ℝ V]
[PseudoMetricSpace P]
[NormedAddTorsor V P]
(s : AffineSubspace ℝ P)
(x : P)
:
IsPreconnected {y : P | s.WSameSide x y}
theorem
AffineSubspace.isConnected_setOf_sSameSide
{V : Type u_2}
{P : Type u_4}
[SeminormedAddCommGroup V]
[NormedSpace ℝ V]
[PseudoMetricSpace P]
[NormedAddTorsor V P]
{s : AffineSubspace ℝ P}
{x : P}
(hx : x ∉ s)
(h : (↑s).Nonempty)
:
IsConnected {y : P | s.SSameSide x y}
theorem
AffineSubspace.isPreconnected_setOf_sSameSide
{V : Type u_2}
{P : Type u_4}
[SeminormedAddCommGroup V]
[NormedSpace ℝ V]
[PseudoMetricSpace P]
[NormedAddTorsor V P]
(s : AffineSubspace ℝ P)
(x : P)
:
IsPreconnected {y : P | s.SSameSide x y}
theorem
AffineSubspace.isConnected_setOf_wOppSide
{V : Type u_2}
{P : Type u_4}
[SeminormedAddCommGroup V]
[NormedSpace ℝ V]
[PseudoMetricSpace P]
[NormedAddTorsor V P]
{s : AffineSubspace ℝ P}
(x : P)
(h : (↑s).Nonempty)
:
IsConnected {y : P | s.WOppSide x y}
theorem
AffineSubspace.isPreconnected_setOf_wOppSide
{V : Type u_2}
{P : Type u_4}
[SeminormedAddCommGroup V]
[NormedSpace ℝ V]
[PseudoMetricSpace P]
[NormedAddTorsor V P]
(s : AffineSubspace ℝ P)
(x : P)
:
IsPreconnected {y : P | s.WOppSide x y}
theorem
AffineSubspace.isConnected_setOf_sOppSide
{V : Type u_2}
{P : Type u_4}
[SeminormedAddCommGroup V]
[NormedSpace ℝ V]
[PseudoMetricSpace P]
[NormedAddTorsor V P]
{s : AffineSubspace ℝ P}
{x : P}
(hx : x ∉ s)
(h : (↑s).Nonempty)
:
IsConnected {y : P | s.SOppSide x y}
theorem
AffineSubspace.isPreconnected_setOf_sOppSide
{V : Type u_2}
{P : Type u_4}
[SeminormedAddCommGroup V]
[NormedSpace ℝ V]
[PseudoMetricSpace P]
[NormedAddTorsor V P]
(s : AffineSubspace ℝ P)
(x : P)
:
IsPreconnected {y : P | s.SOppSide x y}