Documentation

Mathlib.Analysis.Distribution.TestFunction

Continuously differentiable functions with compact support #

This file develops the basic theory of bundled n-times continuously differentiable functions with compact support contained in some open set Ξ©. More explicitly, given normed spaces E and F, an open set Ξ© : Opens E and n : β„•βˆž, we are interested in the space 𝓓^{n}(Ξ©, F) of maps f : E β†’ F such that:

This exists as a bundled type to equip it with the canonical LF topology induced by the inclusions 𝓓_{K}^{n}(Ξ©, F) β†’ 𝓓^{n}(Ξ©, F) (see ContDiffMapSupportedIn). The dual space is then the space of distributions, or "weak solutions" to PDEs, on Ξ©.

Main definitions #

Notation #

Tags #

distributions, test function

structure TestFunction {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ℝ E] (Ξ© : TopologicalSpace.Opens E) (F : Type u_3) [NormedAddCommGroup F] [NormedSpace ℝ F] (n : β„•βˆž) :
Type (max u_2 u_3)

The type of bundled n-times continuously differentiable maps with compact support

Instances For

    Notation for the space of bundled n-times continuously differentiable maps with compact support.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For

      Notation for the space of "test functions", i.e. bundled smooth (infinitely differentiable) maps with compact support.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        class TestFunctionClass (B : Type u_4) {E : outParam (Type u_5)} [NormedAddCommGroup E] [NormedSpace ℝ E] (Ξ© : outParam (TopologicalSpace.Opens E)) (F : outParam (Type u_6)) [NormedAddCommGroup F] [NormedSpace ℝ F] (n : outParam β„•βˆž) extends DFunLike B E fun (x : E) => F :
        Type (max (max u_4 u_5) u_6)

        TestFunctionClass B Ξ© F n states that B is a type of n-times continously differentiable functions E β†’ F with compact support contained in Ξ© : Opens E.

        Instances
          Equations
          @[simp]

          See note [custom simps projection].

          Equations
          Instances For
            theorem TestFunction.ext {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ℝ E] {Ξ© : TopologicalSpace.Opens E} {F : Type u_3} [NormedAddCommGroup F] [NormedSpace ℝ F] {n : β„•βˆž} {f g : TestFunction Ξ© F n} (h : βˆ€ (a : E), f a = g a) :
            f = g
            theorem TestFunction.ext_iff {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ℝ E] {Ξ© : TopologicalSpace.Opens E} {F : Type u_3} [NormedAddCommGroup F] [NormedSpace ℝ F] {n : β„•βˆž} {f g : TestFunction Ξ© F n} :
            f = g ↔ βˆ€ (a : E), f a = g a
            def TestFunction.copy {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ℝ E] {Ξ© : TopologicalSpace.Opens E} {F : Type u_3} [NormedAddCommGroup F] [NormedSpace ℝ F] {n : β„•βˆž} (f : TestFunction Ξ© F n) (f' : E β†’ F) (h : f' = ⇑f) :
            TestFunction Ξ© F n

            Copy of a TestFunction with a new toFun equal to the old one. Useful to fix definitional equalities.

            Equations
            • f.copy f' h = { toFun := f', contDiff' := β‹―, hasCompactSupport' := β‹―, tsupport_subset' := β‹― }
            Instances For
              @[simp]
              theorem TestFunction.coe_copy {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ℝ E] {Ξ© : TopologicalSpace.Opens E} {F : Type u_3} [NormedAddCommGroup F] [NormedSpace ℝ F] {n : β„•βˆž} (f : TestFunction Ξ© F n) (f' : E β†’ F) (h : f' = ⇑f) :
              ⇑(f.copy f' h) = f'
              theorem TestFunction.copy_eq {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ℝ E] {Ξ© : TopologicalSpace.Opens E} {F : Type u_3} [NormedAddCommGroup F] [NormedSpace ℝ F] {n : β„•βˆž} (f : TestFunction Ξ© F n) (f' : E β†’ F) (h : f' = ⇑f) :
              f.copy f' h = f
              @[simp]
              theorem TestFunction.coe_toBoundedContinuousFunction {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ℝ E] {Ξ© : TopologicalSpace.Opens E} {F : Type u_3} [NormedAddCommGroup F] [NormedSpace ℝ F] {n : β„•βˆž} (f : TestFunction Ξ© F n) :
              ⇑{ toFun := ⇑f, continuous_toFun := β‹―, map_bounded' := β‹― } = ⇑f
              Equations
              • TestFunction.instZero = { zero := { toFun := 0, contDiff' := β‹―, hasCompactSupport' := β‹―, tsupport_subset' := β‹― } }
              Equations
              @[simp]
              theorem TestFunction.coe_add {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ℝ E] {Ξ© : TopologicalSpace.Opens E} {F : Type u_3} [NormedAddCommGroup F] [NormedSpace ℝ F] {n : β„•βˆž} (f g : TestFunction Ξ© F n) :
              ⇑(f + g) = ⇑f + ⇑g
              Equations
              @[simp]
              theorem TestFunction.coe_neg {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ℝ E] {Ξ© : TopologicalSpace.Opens E} {F : Type u_3} [NormedAddCommGroup F] [NormedSpace ℝ F] {n : β„•βˆž} (f : TestFunction Ξ© F n) :
              ⇑(-f) = -⇑f
              Equations
              @[simp]
              theorem TestFunction.coe_sub {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ℝ E] {Ξ© : TopologicalSpace.Opens E} {F : Type u_3} [NormedAddCommGroup F] [NormedSpace ℝ F] {n : β„•βˆž} (f g : TestFunction Ξ© F n) :
              ⇑(f - g) = ⇑f - ⇑g
              Equations
              • One or more equations did not get rendered due to their size.
              @[simp]
              theorem TestFunction.coe_smul {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ℝ E] {Ξ© : TopologicalSpace.Opens E} {F : Type u_3} [NormedAddCommGroup F] [NormedSpace ℝ F] {n : β„•βˆž} {R : Type u_4} [Semiring R] [Module R F] [SMulCommClass ℝ R F] [ContinuousConstSMul R F] (c : R) (f : TestFunction Ξ© F n) :
              ⇑(c β€’ f) = c β€’ ⇑f
              Equations
              • One or more equations did not get rendered due to their size.

              Coercion as an additive homomorphism.

              Equations
              Instances For
                @[simp]
                theorem TestFunction.coeFnAddMonoidHom_apply {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ℝ E] (Ξ© : TopologicalSpace.Opens E) (F : Type u_3) [NormedAddCommGroup F] [NormedSpace ℝ F] (n : β„•βˆž) :
                ⇑(coeFnAddMonoidHom Ξ© F n) = fun (f : TestFunction Ξ© F n) => ⇑f
                Equations
                • One or more equations did not get rendered due to their size.