Documentation

Mathlib.Analysis.LocallyConvex.PointwiseConvergence

The topology of pointwise convergence is locally convex #

We prove that the topology of pointwise convergence is induced by a family of seminorms and that it is locally convex in the topological sense

def PointwiseConvergenceCLM.seminorm {𝕜₁ : Type u_2} {𝕜₂ : Type u_3} [NormedField 𝕜₁] [NormedField 𝕜₂] {σ : 𝕜₁ →+* 𝕜₂} {E : Type u_4} {F : Type u_5} [AddCommGroup E] [TopologicalSpace E] [Module 𝕜₁ E] [NormedAddCommGroup F] [NormedSpace 𝕜₂ F] (x : E) :
Seminorm 𝕜₂ (E →SLₚₜ[σ] F)

The family of seminorms that induce the topology of pointwise convergence, namely ‖A x‖ for all x : E.

Equations
Instances For
    @[reducible, inline]
    abbrev PointwiseConvergenceCLM.seminormFamily {𝕜₁ : Type u_2} {𝕜₂ : Type u_3} [NormedField 𝕜₁] [NormedField 𝕜₂] (σ : 𝕜₁ →+* 𝕜₂) (E : Type u_4) (F : Type u_5) [AddCommGroup E] [TopologicalSpace E] [Module 𝕜₁ E] [NormedAddCommGroup F] [NormedSpace 𝕜₂ F] :
    SeminormFamily 𝕜₂ (E →SLₚₜ[σ] F) E

    The family of seminorms that induce the topology of pointwise convergence, namely ‖A x‖ for all x : E.

    Equations
    Instances For
      def PointwiseConvergenceCLM.inducingFn {𝕜₁ : Type u_2} {𝕜₂ : Type u_3} [NormedField 𝕜₁] [NormedField 𝕜₂] (σ : 𝕜₁ →+* 𝕜₂) (E : Type u_4) (F : Type u_5) [AddCommGroup E] [TopologicalSpace E] [Module 𝕜₁ E] [NormedAddCommGroup F] [NormedSpace 𝕜₂ F] :
      (E →SLₚₜ[σ] F) →ₗ[𝕜₂] EF

      The coercion E →SLₚₜ[σ] F to E → F as a linear map.

      The topology on E →SLₚₜ[σ] F is induced by this map.

      Equations
      Instances For
        theorem PointwiseConvergenceCLM.isInducing_inducingFn {𝕜₁ : Type u_2} {𝕜₂ : Type u_3} [NormedField 𝕜₁] [NormedField 𝕜₂] (σ : 𝕜₁ →+* 𝕜₂) (E : Type u_4) (F : Type u_5) [AddCommGroup E] [TopologicalSpace E] [Module 𝕜₁ E] [NormedAddCommGroup F] [NormedSpace 𝕜₂ F] :
        theorem PointwiseConvergenceCLM.withSeminorms {𝕜₁ : Type u_2} {𝕜₂ : Type u_3} [NormedField 𝕜₁] [NormedField 𝕜₂] {σ : 𝕜₁ →+* 𝕜₂} {E : Type u_4} {F : Type u_5} [AddCommGroup E] [TopologicalSpace E] [Module 𝕜₁ E] [NormedAddCommGroup F] [NormedSpace 𝕜₂ F] :
        instance PointwiseConvergenceCLM.instLocallyConvexSpace {R : Type u_1} {𝕜₁ : Type u_2} {𝕜₂ : Type u_3} [NormedField 𝕜₁] [NormedField 𝕜₂] {σ : 𝕜₁ →+* 𝕜₂} {E : Type u_4} {F : Type u_5} [AddCommGroup E] [TopologicalSpace E] [Module 𝕜₁ E] [AddCommGroup F] [TopologicalSpace F] [IsTopologicalAddGroup F] [Module 𝕜₂ F] [Semiring R] [PartialOrder R] [Module R F] [ContinuousConstSMul R F] [LocallyConvexSpace R F] [SMulCommClass 𝕜₂ R F] :