Documentation

Mathlib.Analysis.Meromorphic.FactorizedRational

Factorized Rational Functions #

This file discusses functions ๐•œ โ†’ ๐•œ of the form โˆแถ  u, (ยท - u) ^ d u, where d : ๐•œ โ†’ โ„ค is integer-valued. We show that these "factorized rational functions" are meromorphic in normal form, with divisor equal to d.

Implementation Note: For consistency, we use โˆแถ  u, (ยท - u) ^ d u throughout. If the support of d is finite, then evaluation of functions commutes with finprod, and the helper lemma Function.FactorizedRational.finprod_eval asserts that โˆแถ  u, (ยท - u) ^ d u equals the function fun x โ†ฆ โˆแถ  u, (x - u) ^ d u. If d has infinite support, this equality is wrong in general. There are elementary examples of functions d where โˆแถ  u, (ยท - u) ^ d u is constant one, while fun x โ†ฆ โˆแถ  u, (x - u) ^ d u is not continuous.

TODO: Under suitable assumptions, show that meromorphic functions are equivalent, modulo equality on codiscrete sets, to the product of a factorized rational function and an analytic function without zeros.

theorem Function.FactorizedRational.mulSupport {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] (d : ๐•œ โ†’ โ„ค) :
(Function.mulSupport fun (u : ๐•œ) => (fun (x : ๐•œ) => x - u) ^ d u) = support d

Helper Lemma: Identify the support of d as the mulsupport of the product defining the factorized rational function.

theorem Function.FactorizedRational.finprod_eq_fun {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {d : ๐•œ โ†’ โ„ค} (h : (support d).Finite) :
โˆแถ  (u : ๐•œ), (fun (x : ๐•œ) => x - u) ^ d u = fun (x : ๐•œ) => โˆแถ  (u : ๐•œ), (x - u) ^ d u

Helper Lemma: If the support of d is finite, then evaluation of functions commutes with finprod, and the function โˆแถ  u, (ยท - u) ^ d u equals fun x โ†ฆ โˆแถ  u, (x - u) ^ d u.

theorem Function.FactorizedRational.analyticAt {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {d : ๐•œ โ†’ โ„ค} {x : ๐•œ} (h : 0 โ‰ค d x) :
AnalyticAt ๐•œ (โˆแถ  (u : ๐•œ), (fun (x : ๐•œ) => x - u) ^ d u) x

Factorized rational functions are analytic wherever the exponent is non-negative.

theorem Function.FactorizedRational.ne_zero {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {d : ๐•œ โ†’ โ„ค} {x : ๐•œ} (h : d x = 0) :
(โˆแถ  (u : ๐•œ), (fun (x : ๐•œ) => x - u) ^ d u) x โ‰  0

Factorized rational functions are non-zero wherever the exponent is zero.

theorem Function.FactorizedRational.extractFactor {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {d : ๐•œ โ†’ โ„ค} (uโ‚€ : ๐•œ) (hd : (support d).Finite) :
โˆแถ  (u : ๐•œ), (fun (x : ๐•œ) => x - u) ^ d u = (fun (x : ๐•œ) => x - uโ‚€) ^ d uโ‚€ * โˆแถ  (u : ๐•œ), (fun (x : ๐•œ) => x - u) ^ update d uโ‚€ 0 u

Helper Lemma for Computations: Extract one factor out of a factorized rational function.

theorem Function.FactorizedRational.meromorphicNFOn_univ {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] (d : ๐•œ โ†’ โ„ค) :
MeromorphicNFOn (โˆแถ  (u : ๐•œ), (fun (x : ๐•œ) => x - u) ^ d u) Set.univ

Factorized rational functions are meromorphic in normal form on Set.univ.

theorem Function.FactorizedRational.meromorphicNFOn {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] (d : ๐•œ โ†’ โ„ค) (U : Set ๐•œ) :
MeromorphicNFOn (โˆแถ  (u : ๐•œ), (fun (x : ๐•œ) => x - u) ^ d u) U

Factorized rational functions are meromorphic in normal form on arbitrary subsets of ๐•œ.

theorem Function.FactorizedRational.order {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {z : ๐•œ} (d : ๐•œ โ†’ โ„ค) (hโ‚d : (support d).Finite) :
โ‹ฏ.order = โ†‘(d z)

The order of the factorized rational function (โˆแถ  u, fun z โ†ฆ (z - u) ^ d u) at z equals d z.

theorem Function.FactorizedRational.order_ne_top {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {z : ๐•œ} (d : ๐•œ โ†’ โ„ค) :

Factorized rational functions are nowhere locally constant zero.

theorem Function.FactorizedRational.divisor {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {U : Set ๐•œ} {D : locallyFinsuppWithin U โ„ค} (hD : D.support.Finite) :
MeromorphicOn.divisor (โˆแถ  (u : ๐•œ), (fun (x : ๐•œ) => x - u) ^ D u) U = D

If D is a divisor, then the divisor of the factorized rational function equals D.