Polar coordinates #
We define polar coordinates, as a partial homeomorphism in ℝ^2
between ℝ^2 - (-∞, 0]
and
(0, +∞) × (-π, π)
. Its inverse is given by (r, θ) ↦ (r cos θ, r sin θ)
.
It satisfies the following change of variables formula (see integral_comp_polarCoord_symm
):
∫ p in polarCoord.target, p.1 • f (polarCoord.symm p) = ∫ p, f p
The polar coordinates partial homeomorphism in ℝ^2
, mapping (r cos θ, r sin θ)
to (r, θ)
.
It is a homeomorphism between ℝ^2 - (-∞, 0]
and (0, +∞) × (-π, π)
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
The derivative of polarCoord.symm
, see hasFDerivAt_polarCoord_symm
.
Equations
- fderivPolarCoordSymm p = LinearMap.toContinuousLinearMap ((Matrix.toLin (Basis.finTwoProd ℝ) (Basis.finTwoProd ℝ)) !![Real.cos p.2, -p.1 * Real.sin p.2; Real.sin p.2, p.1 * Real.cos p.2])
Instances For
The polar coordinates partial homeomorphism in ℂ
, mapping r (cos θ + I * sin θ)
to (r, θ)
.
It is a homeomorphism between ℂ - ℝ≤0
and (0, +∞) × (-π, π)
.
Equations
Instances For
The derivative of polarCoord.symm
on ι → ℝ × ℝ
, see hasFDerivAt_pi_polarCoord_symm
.
Equations
- fderivPiPolarCoordSymm p = ContinuousLinearMap.pi fun (i : ι) => (fderivPolarCoordSymm (p i)).comp (ContinuousLinearMap.proj i)