Documentation

Mathlib.CategoryTheory.Idempotents.HomologicalComplex

Idempotent completeness and homological complexes #

This file contains simplifications lemmas for categories Karoubi (HomologicalComplex C c) and the construction of an equivalence of categories Karoubi (HomologicalComplex C c) ≌ HomologicalComplex (Karoubi C) c.

When the category C is idempotent complete, it is shown that HomologicalComplex (Karoubi C) c is also idempotent complete.

@[simp]
theorem CategoryTheory.Idempotents.Karoubi.HomologicalComplex.p_comp_d {C : Type u_1} [Category.{u_3, u_1} C] [Preadditive C] {ι : Type u_2} {c : ComplexShape ι} {P Q : Karoubi (HomologicalComplex C c)} (f : P Q) (n : ι) :
CategoryStruct.comp (P.p.f n) (f.f.f n) = f.f.f n
theorem CategoryTheory.Idempotents.Karoubi.HomologicalComplex.p_comp_d_assoc {C : Type u_1} [Category.{u_3, u_1} C] [Preadditive C] {ι : Type u_2} {c : ComplexShape ι} {P Q : Karoubi (HomologicalComplex C c)} (f : P Q) (n : ι) {Z : C} (h : Q.X.X n Z) :
CategoryStruct.comp (P.p.f n) (CategoryStruct.comp (f.f.f n) h) = CategoryStruct.comp (f.f.f n) h
@[simp]
theorem CategoryTheory.Idempotents.Karoubi.HomologicalComplex.comp_p_d {C : Type u_1} [Category.{u_3, u_1} C] [Preadditive C] {ι : Type u_2} {c : ComplexShape ι} {P Q : Karoubi (HomologicalComplex C c)} (f : P Q) (n : ι) :
CategoryStruct.comp (f.f.f n) (Q.p.f n) = f.f.f n
theorem CategoryTheory.Idempotents.Karoubi.HomologicalComplex.comp_p_d_assoc {C : Type u_1} [Category.{u_3, u_1} C] [Preadditive C] {ι : Type u_2} {c : ComplexShape ι} {P Q : Karoubi (HomologicalComplex C c)} (f : P Q) (n : ι) {Z : C} (h : Q.X.X n Z) :
CategoryStruct.comp (f.f.f n) (CategoryStruct.comp (Q.p.f n) h) = CategoryStruct.comp (f.f.f n) h
theorem CategoryTheory.Idempotents.Karoubi.HomologicalComplex.p_comm_f {C : Type u_1} [Category.{u_3, u_1} C] [Preadditive C] {ι : Type u_2} {c : ComplexShape ι} {P Q : Karoubi (HomologicalComplex C c)} (f : P Q) (n : ι) :
CategoryStruct.comp (P.p.f n) (f.f.f n) = CategoryStruct.comp (f.f.f n) (Q.p.f n)
theorem CategoryTheory.Idempotents.Karoubi.HomologicalComplex.p_comm_f_assoc {C : Type u_1} [Category.{u_3, u_1} C] [Preadditive C] {ι : Type u_2} {c : ComplexShape ι} {P Q : Karoubi (HomologicalComplex C c)} (f : P Q) (n : ι) {Z : C} (h : Q.X.X n Z) :
CategoryStruct.comp (P.p.f n) (CategoryStruct.comp (f.f.f n) h) = CategoryStruct.comp (f.f.f n) (CategoryStruct.comp (Q.p.f n) h)
@[simp]
theorem CategoryTheory.Idempotents.Karoubi.HomologicalComplex.p_idem {C : Type u_1} [Category.{u_3, u_1} C] [Preadditive C] {ι : Type u_2} {c : ComplexShape ι} (P : Karoubi (HomologicalComplex C c)) (n : ι) :
CategoryStruct.comp (P.p.f n) (P.p.f n) = P.p.f n
theorem CategoryTheory.Idempotents.Karoubi.HomologicalComplex.p_idem_assoc {C : Type u_1} [Category.{u_3, u_1} C] [Preadditive C] {ι : Type u_2} {c : ComplexShape ι} (P : Karoubi (HomologicalComplex C c)) (n : ι) {Z : C} (h : P.X.X n Z) :
CategoryStruct.comp (P.p.f n) (CategoryStruct.comp (P.p.f n) h) = CategoryStruct.comp (P.p.f n) h

The functor Karoubi (HomologicalComplex C c) ⥤ HomologicalComplex (Karoubi C) c, on objects.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    @[simp]

    The functor Karoubi (HomologicalComplex C c) ⥤ HomologicalComplex (Karoubi C) c, on morphisms.

    Equations
    Instances For
      @[simp]
      theorem CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Functor.map_f_f {C : Type u_1} [Category.{u_3, u_1} C] [Preadditive C] {ι : Type u_2} {c : ComplexShape ι} {P Q : Karoubi (HomologicalComplex C c)} (f : P Q) (n : ι) :
      ((map f).f n).f = f.f.f n

      The functor Karoubi (HomologicalComplex C c) ⥤ HomologicalComplex (Karoubi C) c.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For

        The functor HomologicalComplex (Karoubi C) c ⥤ Karoubi (HomologicalComplex C c), on objects

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          @[simp]

          The functor HomologicalComplex (Karoubi C) c ⥤ Karoubi (HomologicalComplex C c), on morphisms

          Equations
          Instances For
            @[simp]
            theorem CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Inverse.map_f_f {C : Type u_1} [Category.{u_3, u_1} C] [Preadditive C] {ι : Type u_2} {c : ComplexShape ι} {K L : HomologicalComplex (Karoubi C) c} (f : K L) (n : ι) :
            (map f).f.f n = (f.f n).f

            The functor HomologicalComplex (Karoubi C) c ⥤ Karoubi (HomologicalComplex C c).

            Equations
            • One or more equations did not get rendered due to their size.
            Instances For

              The unit isomorphism of the equivalence Karoubi (HomologicalComplex C c) ≌ HomologicalComplex (Karoubi C) c.

              Equations
              • One or more equations did not get rendered due to their size.
              Instances For

                The equivalence Karoubi (HomologicalComplex C c) ≌ HomologicalComplex (Karoubi C) c.

                Equations
                • One or more equations did not get rendered due to their size.
                Instances For
                  @[simp]
                  theorem CategoryTheory.Idempotents.karoubiChainComplexEquivalence_functor_map_f_f (C : Type u_1) [Category.{u_4, u_1} C] [Preadditive C] (α : Type u_3) [AddRightCancelSemigroup α] [One α] {X✝ Y✝ : Karoubi (HomologicalComplex C (ComplexShape.down α))} (f : X✝ Y✝) (n : α) :
                  (((karoubiChainComplexEquivalence C α).functor.map f).f n).f = f.f.f n
                  @[simp]
                  theorem CategoryTheory.Idempotents.karoubiChainComplexEquivalence_inverse_map_f_f (C : Type u_1) [Category.{u_4, u_1} C] [Preadditive C] (α : Type u_3) [AddRightCancelSemigroup α] [One α] {X✝ Y✝ : HomologicalComplex (Karoubi C) (ComplexShape.down α)} (f : X✝ Y✝) (n : α) :
                  ((karoubiChainComplexEquivalence C α).inverse.map f).f.f n = (f.f n).f
                  @[simp]
                  theorem CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_functor_map_f_f (C : Type u_1) [Category.{u_4, u_1} C] [Preadditive C] (α : Type u_3) [AddRightCancelSemigroup α] [One α] {X✝ Y✝ : Karoubi (HomologicalComplex C (ComplexShape.up α))} (f : X✝ Y✝) (n : α) :
                  (((karoubiCochainComplexEquivalence C α).functor.map f).f n).f = f.f.f n
                  @[simp]
                  theorem CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_inverse_map_f_f (C : Type u_1) [Category.{u_4, u_1} C] [Preadditive C] (α : Type u_3) [AddRightCancelSemigroup α] [One α] {X✝ Y✝ : HomologicalComplex (Karoubi C) (ComplexShape.up α)} (f : X✝ Y✝) (n : α) :
                  ((karoubiCochainComplexEquivalence C α).inverse.map f).f.f n = (f.f n).f