Mon (ModuleCat R) ≌ AlgCat R #
The category of internal monoid objects in ModuleCat R
is equivalent to the category of "native" bundled R-algebras.
Moreover, this equivalence is compatible with the forgetful functors to ModuleCat R.
noncomputable instance
ModuleCat.MonModuleEquivalenceAlgebra.MonObj.toRing
{R : Type u}
[CommRing R]
(A : ModuleCat R)
[CategoryTheory.MonObj A]
:
Ring ↑A
Equations
- One or more equations did not get rendered due to their size.
noncomputable instance
ModuleCat.MonModuleEquivalenceAlgebra.Algebra_of_Mon_
{R : Type u}
[CommRing R]
(A : ModuleCat R)
[CategoryTheory.MonObj A]
:
Algebra R ↑A
Equations
- One or more equations did not get rendered due to their size.
@[simp]
theorem
ModuleCat.MonModuleEquivalenceAlgebra.algebraMap
{R : Type u}
[CommRing R]
(A : ModuleCat R)
[CategoryTheory.MonObj A]
(r : R)
:
Converting a monoid object in ModuleCat R to a bundled algebra.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
ModuleCat.MonModuleEquivalenceAlgebra.functor_obj_carrier
{R : Type u}
[CommRing R]
(A : CategoryTheory.Mon (ModuleCat R))
:
@[simp]
theorem
ModuleCat.MonModuleEquivalenceAlgebra.functor_map_hom_apply
{R : Type u}
[CommRing R]
{x✝ x✝¹ : CategoryTheory.Mon (ModuleCat R)}
(f : x✝ ⟶ x✝¹)
(a : ↑x✝.X)
:
noncomputable def
ModuleCat.MonModuleEquivalenceAlgebra.inverseObj
{R : Type u}
[CommRing R]
(A : AlgCat R)
:
CategoryTheory.MonObj (of R ↑A)
Converting a bundled algebra to a monoid object in ModuleCat R.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
ModuleCat.MonModuleEquivalenceAlgebra.inverseObj_one
{R : Type u}
[CommRing R]
(A : AlgCat R)
:
@[simp]
theorem
ModuleCat.MonModuleEquivalenceAlgebra.inverseObj_mul
{R : Type u}
[CommRing R]
(A : AlgCat R)
:
Converting a bundled algebra to a monoid object in ModuleCat R.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
ModuleCat.MonModuleEquivalenceAlgebra.inverse_map_hom
{R : Type u}
[CommRing R]
{X✝ Y✝ : AlgCat R}
(f : X✝ ⟶ Y✝)
:
@[simp]
theorem
ModuleCat.MonModuleEquivalenceAlgebra.inverse_obj_mon
{R : Type u}
[CommRing R]
(A : AlgCat R)
:
@[simp]
theorem
ModuleCat.MonModuleEquivalenceAlgebra.inverse_obj_X_isAddCommGroup
{R : Type u}
[CommRing R]
(A : AlgCat R)
:
The category of internal monoid objects in ModuleCat R
is equivalent to the category of "native" bundled R-algebras.
Equations
- One or more equations did not get rendered due to their size.
Instances For
The equivalence Mon (ModuleCat R) ≌ AlgCat R
is naturally compatible with the forgetful functors to ModuleCat R.
Equations
- One or more equations did not get rendered due to their size.