Mon_ (ModuleCat R) ≌ AlgebraCat R
#
The category of internal monoid objects in ModuleCat R
is equivalent to the category of "native" bundled R
-algebras.
Moreover, this equivalence is compatible with the forgetful functors to ModuleCat R
.
noncomputable instance
ModuleCat.MonModuleEquivalenceAlgebra.Ring_of_Mon_
{R : Type u}
[CommRing R]
(A : Mon_ (ModuleCat R))
:
Equations
- ModuleCat.MonModuleEquivalenceAlgebra.Ring_of_Mon_ A = Ring.mk ⋯ SubNegMonoid.zsmul ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
@[simp]
theorem
ModuleCat.MonModuleEquivalenceAlgebra.algebraMap
{R : Type u}
[CommRing R]
(A : Mon_ (ModuleCat R))
(r : R)
:
noncomputable def
ModuleCat.MonModuleEquivalenceAlgebra.functor
{R : Type u}
[CommRing R]
:
CategoryTheory.Functor (Mon_ (ModuleCat R)) (AlgebraCat R)
Converting a monoid object in ModuleCat R
to a bundled algebra.
Equations
- One or more equations did not get rendered due to their size.
Instances For
noncomputable def
ModuleCat.MonModuleEquivalenceAlgebra.inverseObj
{R : Type u}
[CommRing R]
(A : AlgebraCat R)
:
Converting a bundled algebra to a monoid object in ModuleCat R
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
ModuleCat.MonModuleEquivalenceAlgebra.inverseObj_one
{R : Type u}
[CommRing R]
(A : AlgebraCat R)
:
@[simp]
theorem
ModuleCat.MonModuleEquivalenceAlgebra.inverseObj_mul
{R : Type u}
[CommRing R]
(A : AlgebraCat R)
:
@[simp]
theorem
ModuleCat.MonModuleEquivalenceAlgebra.inverseObj_X_isModule
{R : Type u}
[CommRing R]
(A : AlgebraCat R)
:
@[simp]
theorem
ModuleCat.MonModuleEquivalenceAlgebra.inverseObj_X_isAddCommGroup
{R : Type u}
[CommRing R]
(A : AlgebraCat R)
:
@[simp]
theorem
ModuleCat.MonModuleEquivalenceAlgebra.inverseObj_X_carrier
{R : Type u}
[CommRing R]
(A : AlgebraCat R)
:
noncomputable def
ModuleCat.MonModuleEquivalenceAlgebra.inverse
{R : Type u}
[CommRing R]
:
CategoryTheory.Functor (AlgebraCat R) (Mon_ (ModuleCat R))
Converting a bundled algebra to a monoid object in ModuleCat R
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
ModuleCat.MonModuleEquivalenceAlgebra.inverse_map_hom
{R : Type u}
[CommRing R]
{X✝ Y✝ : AlgebraCat R}
(f : X✝ ⟶ Y✝)
:
@[simp]
theorem
ModuleCat.MonModuleEquivalenceAlgebra.inverse_obj
{R : Type u}
[CommRing R]
(A : AlgebraCat R)
:
The category of internal monoid objects in ModuleCat R
is equivalent to the category of "native" bundled R
-algebras.
Equations
- One or more equations did not get rendered due to their size.
Instances For
The equivalence Mon_ (ModuleCat R) ≌ AlgebraCat R
is naturally compatible with the forgetful functors to ModuleCat R
.
Equations
- One or more equations did not get rendered due to their size.