Mon_ (ModuleCat R) ≌ AlgebraCat R
#
The category of internal monoid objects in ModuleCat R
is equivalent to the category of "native" bundled R
-algebras.
Moreover, this equivalence is compatible with the forgetful functors to ModuleCat R
.
noncomputable instance
ModuleCat.MonModuleEquivalenceAlgebra.Ring_of_Mon_
{R : Type u}
[CommRing R]
(A : Mon_ (ModuleCat R))
:
Ring ↑A.X
Equations
- ModuleCat.MonModuleEquivalenceAlgebra.Ring_of_Mon_ A = Ring.mk ⋯ SubNegMonoid.zsmul ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
noncomputable instance
ModuleCat.MonModuleEquivalenceAlgebra.Algebra_of_Mon_
{R : Type u}
[CommRing R]
(A : Mon_ (ModuleCat R))
:
Algebra R ↑A.X
Equations
- ModuleCat.MonModuleEquivalenceAlgebra.Algebra_of_Mon_ A = Algebra.mk (let __src := A.one.hom; { toFun := __src.toFun, map_one' := ⋯, map_mul' := ⋯, map_zero' := ⋯, map_add' := ⋯ }) ⋯ ⋯
@[simp]
theorem
ModuleCat.MonModuleEquivalenceAlgebra.algebraMap
{R : Type u}
[CommRing R]
(A : Mon_ (ModuleCat R))
(r : R)
:
(_root_.algebraMap R ↑A.X) r = A.one.hom r
noncomputable def
ModuleCat.MonModuleEquivalenceAlgebra.functor
{R : Type u}
[CommRing R]
:
CategoryTheory.Functor (Mon_ (ModuleCat R)) (AlgebraCat R)
Converting a monoid object in ModuleCat R
to a bundled algebra.
Equations
- One or more equations did not get rendered due to their size.
Instances For
noncomputable def
ModuleCat.MonModuleEquivalenceAlgebra.inverseObj
{R : Type u}
[CommRing R]
(A : AlgebraCat R)
:
Converting a bundled algebra to a monoid object in ModuleCat R
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
ModuleCat.MonModuleEquivalenceAlgebra.inverseObj_X_isAddCommGroup
{R : Type u}
[CommRing R]
(A : AlgebraCat R)
:
(inverseObj A).X.isAddCommGroup = Ring.toAddCommGroup
@[simp]
theorem
ModuleCat.MonModuleEquivalenceAlgebra.inverseObj_one_hom
{R : Type u}
[CommRing R]
(A : AlgebraCat R)
:
(inverseObj A).one.hom = Algebra.linearMap R ↑A
@[simp]
theorem
ModuleCat.MonModuleEquivalenceAlgebra.inverseObj_X_isModule
{R : Type u}
[CommRing R]
(A : AlgebraCat R)
:
(inverseObj A).X.isModule = Algebra.toModule
@[simp]
theorem
ModuleCat.MonModuleEquivalenceAlgebra.inverseObj_mul_hom
{R : Type u}
[CommRing R]
(A : AlgebraCat R)
:
(inverseObj A).mul.hom = LinearMap.mul' R ↑A
@[simp]
theorem
ModuleCat.MonModuleEquivalenceAlgebra.inverseObj_X_carrier
{R : Type u}
[CommRing R]
(A : AlgebraCat R)
:
↑(inverseObj A).X = ↑A
noncomputable def
ModuleCat.MonModuleEquivalenceAlgebra.inverse
{R : Type u}
[CommRing R]
:
CategoryTheory.Functor (AlgebraCat R) (Mon_ (ModuleCat R))
Converting a bundled algebra to a monoid object in ModuleCat R
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
ModuleCat.MonModuleEquivalenceAlgebra.inverse_map_hom_hom
{R : Type u}
[CommRing R]
{X✝ Y✝ : AlgebraCat R}
(f : X✝ ⟶ Y✝)
:
@[simp]
theorem
ModuleCat.MonModuleEquivalenceAlgebra.inverse_obj
{R : Type u}
[CommRing R]
(A : AlgebraCat R)
:
inverse.obj A = inverseObj A
noncomputable def
ModuleCat.monModuleEquivalenceAlgebra
{R : Type u}
[CommRing R]
:
Mon_ (ModuleCat R) ≌ AlgebraCat R
The category of internal monoid objects in ModuleCat R
is equivalent to the category of "native" bundled R
-algebras.
Equations
- One or more equations did not get rendered due to their size.
Instances For
noncomputable def
ModuleCat.monModuleEquivalenceAlgebraForget
{R : Type u}
[CommRing R]
:
MonModuleEquivalenceAlgebra.functor.comp (CategoryTheory.forget₂ (AlgebraCat R) (ModuleCat R)) ≅ Mon_.forget (ModuleCat R)
The equivalence Mon_ (ModuleCat R) ≌ AlgebraCat R
is naturally compatible with the forgetful functors to ModuleCat R
.
Equations
- One or more equations did not get rendered due to their size.