Ind and pro-properties #
Given a morphism property P, we define a morphism property ind P that is satisfied for
f : X ⟶ Y if Y is a filtered colimit of Yᵢ and fᵢ : X ⟶ Yᵢ satisfy P.
We show that ind P inherits stability properties from P.
Main definitions #
CategoryTheory.MorphismProperty.ind:fsatisfiesind Piffis a filtered colimit of morphisms inP.
Main results: #
CategoryTheory.MorphismProperty.ind_ind: IfPimplies finitely presentable, thenP.ind.ind = P.ind.
TODOs: #
- Dualise to obtain
pro P. - Show
ind Pis stable under composition ifPspreads out (Christian).
Let P be a property of morphisms. P.ind is satisfied for f : X ⟶ Y
if there exists a family of natural maps tᵢ : X ⟶ Yᵢ and sᵢ : Yᵢ ⟶ Y indexed by J
such that
Jis filteredY ≅ colim Yᵢvia{sᵢ}ᵢtᵢsatisfiesPfor allif = tᵢ ≫ sᵢfor alli.
See CategoryTheory.MorphismProperty.ind_iff_ind_under_mk for an equivalent characterization
in terms of Y as an object of Under X.
Equations
- One or more equations did not get rendered due to their size.
Instances For
ind is idempotent if P implies finitely presentable.
A property of morphisms P is said to pre-ind-spread if P-morphisms out of filtered colimits
descend to a finite level. More precisely, let Dᵢ be a filtered family of objects.
Then:
- If
f : colim Dᵢ ⟶ TsatisfiesP, there exists an indexjand a pushout square
such thatDⱼ ----f'---> T' | | | | v v colim Dᵢ --f--> Tf'satisfiesP.
- exists_isPushout {J : Type w} [SmallCategory J] [IsFiltered J] {D : Functor J C} {c : Limits.Cocone D} : ∀ (x : Limits.IsColimit c) {T : C} (f : c.pt ⟶ T), P f → ∃ (j : J) (T' : C) (f' : D.obj j ⟶ T') (g : T' ⟶ T), IsPushout (c.ι.app j) f' f g ∧ P f'
Instances
Alias of CategoryTheory.MorphismProperty.PreIndSpreads.exists_isPushout.
If P ind-spreads and all under categories are finitely accessible, ind P
is stable under composition if P is.
If P ind-spreads and all under categories are finitely accessible, ind P
is multiplicative if P is.