Documentation

Mathlib.CategoryTheory.MorphismProperty.Ind

Ind and pro-properties #

Given a morphism property P, we define a morphism property ind P that is satisfied for f : X ⟶ Y if Y is a filtered colimit of Yᵢ and fᵢ : X ⟶ Yᵢ satisfy P.

We show that ind P inherits stability properties from P.

Main definitions #

Main results: #

TODOs: #

Let P be a property of morphisms. P.ind is satisfied for f : X ⟶ Y if there exists a family of natural maps tᵢ : X ⟶ Yᵢ and sᵢ : Yᵢ ⟶ Y indexed by J such that

  • J is filtered
  • Y ≅ colim Yᵢ via {sᵢ}ᵢ
  • tᵢ satisfies P for all i
  • f = tᵢ ≫ sᵢ for all i.

See CategoryTheory.MorphismProperty.ind_iff_ind_under_mk for an equivalent characterization in terms of Y as an object of Under X.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    theorem CategoryTheory.MorphismProperty.exists_hom_of_isFinitelyPresentable {C : Type u} [Category.{v, u} C] {J : Type w} [SmallCategory J] [IsFiltered J] {D : Functor J C} {c : Limits.Cocone D} (hc : Limits.IsColimit c) {X A : C} {p : X A} (hp : isFinitelyPresentable C p) (s : (Functor.const J).obj X D) (f : A c.pt) (h : ∀ (j : J), CategoryStruct.comp (s.app j) (c.ι.app j) = CategoryStruct.comp p f) :
    ∃ (j : J) (q : A D.obj j), CategoryStruct.comp p q = s.app j CategoryStruct.comp q (c.ι.app j) = f

    ind is idempotent if P implies finitely presentable.