Ind and pro-properties #
Given a morphism property P, we define a morphism property ind P that is satisfied for
f : X ⟶ Y if Y is a filtered colimit of Yᵢ and fᵢ : X ⟶ Yᵢ satisfy P.
We show that ind P inherits stability properties from P.
Main definitions #
CategoryTheory.MorphismProperty.ind:fsatisfiesind Piffis a filtered colimit of morphisms inP.
Main results: #
CategoryTheory.MorphismProperty.ind_ind: IfPimplies finitely presentable, thenP.ind.ind = P.ind.
TODOs: #
- Dualise to obtain
pro P. - Show
ind Pis stable under composition ifPspreads out (Christian).
Let P be a property of morphisms. P.ind is satisfied for f : X ⟶ Y
if there exists a family of natural maps tᵢ : X ⟶ Yᵢ and sᵢ : Yᵢ ⟶ Y indexed by J
such that
Jis filteredY ≅ colim Yᵢvia{sᵢ}ᵢtᵢsatisfiesPfor allif = tᵢ ≫ sᵢfor alli.
See CategoryTheory.MorphismProperty.ind_iff_ind_under_mk for an equivalent characterization
in terms of Y as an object of Under X.
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
CategoryTheory.MorphismProperty.exists_hom_of_isFinitelyPresentable
{C : Type u}
[Category.{v, u} C]
{J : Type w}
[SmallCategory J]
[IsFiltered J]
{D : Functor J C}
{c : Limits.Cocone D}
(hc : Limits.IsColimit c)
{X A : C}
{p : X ⟶ A}
(hp : isFinitelyPresentable C p)
(s : (Functor.const J).obj X ⟶ D)
(f : A ⟶ c.pt)
(h : ∀ (j : J), CategoryStruct.comp (s.app j) (c.ι.app j) = CategoryStruct.comp p f)
:
∃ (j : J) (q : A ⟶ D.obj j), CategoryStruct.comp p q = s.app j ∧ CategoryStruct.comp q (c.ι.app j) = f
theorem
CategoryTheory.MorphismProperty.le_ind
{C : Type u}
[Category.{v, u} C]
(P : MorphismProperty C)
:
theorem
CategoryTheory.MorphismProperty.ind_iff_ind_underMk
{C : Type u}
[Category.{v, u} C]
{P : MorphismProperty C}
{X Y : C}
(f : X ⟶ Y)
:
theorem
CategoryTheory.MorphismProperty.underObj_ind_eq_ind_underObj
{C : Type u}
[Category.{v, u} C]
{P : MorphismProperty C}
(X : C)
:
instance
CategoryTheory.MorphismProperty.instRespectsLeftInd
{C : Type u}
[Category.{v, u} C]
{P : MorphismProperty C}
(Q : MorphismProperty C)
[P.RespectsLeft Q]
:
P.ind.RespectsLeft Q
instance
CategoryTheory.MorphismProperty.instRespectsIsoInd
{C : Type u}
[Category.{v, u} C]
{P : MorphismProperty C}
[P.RespectsIso]
:
theorem
CategoryTheory.MorphismProperty.ind_underObj_pushout
{C : Type u}
[Category.{v, u} C]
{P : MorphismProperty C}
{X Y : C}
(g : X ⟶ Y)
[Limits.HasPushouts C]
[P.IsStableUnderCobaseChange]
{f : Under X}
(hf : P.underObj.ind f)
:
P.underObj.ind ((Under.pushout g).obj f)
theorem
CategoryTheory.MorphismProperty.ind_ind
{C : Type u}
[Category.{v, u} C]
{P : MorphismProperty C}
(hp : P ≤ isFinitelyPresentable C)
[LocallySmall.{w, v, u} C]
:
ind is idempotent if P implies finitely presentable.