Ind and pro-properties #
Given a morphism property P
, we define a morphism property ind P
that is satisfied for
f : X ⟶ Y
if Y
is a filtered colimit of Yᵢ
and fᵢ : X ⟶ Yᵢ
satisfy P
.
We show that ind P
inherits stability properties from P
.
Main definitions #
CategoryTheory.MorphismProperty.ind
:f
satisfiesind P
iff
is a filtered colimit of morphisms inP
.
Main results: #
CategoryTheory.MorphismProperty.ind_ind
: IfP
implies finitely presentable, thenP.ind.ind = P.ind
.
TODOs: #
- Dualise to obtain
pro P
. - Show
ind P
is stable under composition ifP
spreads out (Christian).
Let P
be a property of morphisms. P.ind
is satisfied for f : X ⟶ Y
if there exists a family of natural maps tᵢ : X ⟶ Yᵢ
and sᵢ : Yᵢ ⟶ Y
indexed by J
such that
J
is filteredY ≅ colim Yᵢ
via{sᵢ}ᵢ
tᵢ
satisfiesP
for alli
f = tᵢ ≫ sᵢ
for alli
.
See CategoryTheory.MorphismProperty.ind_iff_ind_under_mk
for an equivalent characterization
in terms of Y
as an object of Under X
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
CategoryTheory.MorphismProperty.exists_hom_of_isFinitelyPresentable
{C : Type u}
[Category.{v, u} C]
{J : Type w}
[SmallCategory J]
[IsFiltered J]
{D : Functor J C}
{c : Limits.Cocone D}
(hc : Limits.IsColimit c)
{X A : C}
{p : X ⟶ A}
(hp : isFinitelyPresentable C p)
(s : (Functor.const J).obj X ⟶ D)
(f : A ⟶ c.pt)
(h : ∀ (j : J), CategoryStruct.comp (s.app j) (c.ι.app j) = CategoryStruct.comp p f)
:
∃ (j : J) (q : A ⟶ D.obj j), CategoryStruct.comp p q = s.app j ∧ CategoryStruct.comp q (c.ι.app j) = f
theorem
CategoryTheory.MorphismProperty.le_ind
{C : Type u}
[Category.{v, u} C]
(P : MorphismProperty C)
:
theorem
CategoryTheory.MorphismProperty.ind_iff_ind_underMk
{C : Type u}
[Category.{v, u} C]
{P : MorphismProperty C}
{X Y : C}
(f : X ⟶ Y)
:
theorem
CategoryTheory.MorphismProperty.underObj_ind_eq_ind_underObj
{C : Type u}
[Category.{v, u} C]
{P : MorphismProperty C}
(X : C)
:
instance
CategoryTheory.MorphismProperty.instRespectsLeftInd
{C : Type u}
[Category.{v, u} C]
{P : MorphismProperty C}
(Q : MorphismProperty C)
[P.RespectsLeft Q]
:
P.ind.RespectsLeft Q
instance
CategoryTheory.MorphismProperty.instRespectsIsoInd
{C : Type u}
[Category.{v, u} C]
{P : MorphismProperty C}
[P.RespectsIso]
:
theorem
CategoryTheory.MorphismProperty.ind_underObj_pushout
{C : Type u}
[Category.{v, u} C]
{P : MorphismProperty C}
{X Y : C}
(g : X ⟶ Y)
[Limits.HasPushouts C]
[P.IsStableUnderCobaseChange]
{f : Under X}
(hf : P.underObj.ind f)
:
P.underObj.ind ((Under.pushout g).obj f)
theorem
CategoryTheory.MorphismProperty.ind_ind
{C : Type u}
[Category.{v, u} C]
{P : MorphismProperty C}
(hp : P ≤ isFinitelyPresentable C)
[LocallySmall.{w, v, u} C]
:
ind
is idempotent if P
implies finitely presentable.