Closure of a property of objects under colimits of bounded cardinality #
In this file, given P : ObjectProperty C and κ : Cardinal.{w},
we introduce the closure P.colimitsCardinalClosure κ
of P under colimits of shapes given by categories J such
that Arrow J is of cardinality < κ.
If C is locally w-small and P is essentially w-small,
we show that this closure P.colimitsCardinalClosure κ is
also essentially w-small.
def
CategoryTheory.ObjectProperty.colimitsCardinalClosure
{C : Type u}
[Category.{v, u} C]
(P : ObjectProperty C)
(κ : Cardinal.{w})
:
Given P : ObjectProperty C and κ : Cardinal.{w}, this is the closure
of P under colimits of shape given by categories J such that
Arrow J is of cardinality < κ.
Equations
Instances For
instance
CategoryTheory.ObjectProperty.instEssentiallySmallColimitsCardinalClosureOfLocallySmall
{C : Type u}
[Category.{v, u} C]
(P : ObjectProperty C)
(κ : Cardinal.{w})
[ObjectProperty.EssentiallySmall.{w, v, u} P]
[LocallySmall.{w, v, u} C]
:
instance
CategoryTheory.ObjectProperty.instIsClosedUnderColimitsOfShapeColimitsCardinalClosureCategoryFamily
{C : Type u}
[Category.{v, u} C]
(P : ObjectProperty C)
(κ : Cardinal.{w})
(S : SmallCategoryCardinalLT κ)
:
theorem
CategoryTheory.ObjectProperty.isClosedUnderColimitsOfShape_colimitsCardinalClosure
{C : Type u}
[Category.{v, u} C]
(P : ObjectProperty C)
(κ : Cardinal.{w})
(J : Type u')
[Category.{v', u'} J]
(hJ : HasCardinalLT (Arrow J) κ)
: