Documentation

Mathlib.CategoryTheory.ObjectProperty.ColimitsClosure

Closure of a property of objects under colimits of certain shapes #

In this file, given a property P of objects in a category C and family of categories J : α → Type _, we introduce the closure P.colimitsClosure J of P under colimits of shapes J a for all a : α, and under certain smallness assumptions, we show that it is essentially small.

(We deduce these results about the closure under colimits by dualising the results in the file Mathlib/CategoryTheory/ObjectProperty/LimitsClosure.lean.)

inductive CategoryTheory.ObjectProperty.colimitsClosure {C : Type u} [Category.{v, u} C] (P : ObjectProperty C) {α : Type t} (J : αType u') [(a : α) → Category.{v', u'} (J a)] :

The closure of a property of objects of a category under colimits of shape J a for a family of categories J.

Instances For
    @[simp]
    theorem CategoryTheory.ObjectProperty.le_colimitsClosure {C : Type u} [Category.{v, u} C] (P : ObjectProperty C) {α : Type t} (J : αType u') [(a : α) → Category.{v', u'} (J a)] :
    theorem CategoryTheory.ObjectProperty.colimitsClosure_le {C : Type u} [Category.{v, u} C] {P : ObjectProperty C} {α : Type t} {J : αType u'} [(a : α) → Category.{v', u'} (J a)] {Q : ObjectProperty C} [Q.IsClosedUnderIsomorphisms] [∀ (a : α), Q.IsClosedUnderColimitsOfShape (J a)] (h : P Q) :
    theorem CategoryTheory.ObjectProperty.colimitsClosure_monotone {C : Type u} [Category.{v, u} C] {P : ObjectProperty C} {α : Type t} (J : αType u') [(a : α) → Category.{v', u'} (J a)] {Q : ObjectProperty C} (h : P Q) :
    theorem CategoryTheory.ObjectProperty.colimitsClosure_eq_unop_limitsClosure {C : Type u} [Category.{v, u} C] (P : ObjectProperty C) {α : Type t} (J : αType u') [(a : α) → Category.{v', u'} (J a)] :
    P.colimitsClosure J = (P.op.limitsClosure fun (a : α) => (J a)ᵒᵖ).unop