Documentation

Mathlib.CategoryTheory.ObjectProperty.LimitsClosure

Closure of a property of objects under limits of certain shapes #

In this file, given a property P of objects in a category C and family of categories J : α → Type _, we introduce the closure P.limitsClosure J of P under limits of shapes J a for all a : α, and under certain smallness assumptions, we show that its essentially small.

inductive CategoryTheory.ObjectProperty.limitsClosure {C : Type u} [Category.{v, u} C] (P : ObjectProperty C) {α : Type t} (J : αType u') [(a : α) → Category.{v', u'} (J a)] :

The closure of a property of objects of a category under limits of shape J a for a family of categories J.

Instances For
    @[simp]
    theorem CategoryTheory.ObjectProperty.le_limitsClosure {C : Type u} [Category.{v, u} C] (P : ObjectProperty C) {α : Type t} (J : αType u') [(a : α) → Category.{v', u'} (J a)] :
    theorem CategoryTheory.ObjectProperty.limitsClosure_le {C : Type u} [Category.{v, u} C] {P : ObjectProperty C} {α : Type t} {J : αType u'} [(a : α) → Category.{v', u'} (J a)] {Q : ObjectProperty C} [Q.IsClosedUnderIsomorphisms] [∀ (a : α), Q.IsClosedUnderLimitsOfShape (J a)] (h : P Q) :
    theorem CategoryTheory.ObjectProperty.limitsClosure_monotone {C : Type u} [Category.{v, u} C] {P : ObjectProperty C} {α : Type t} (J : αType u') [(a : α) → Category.{v', u'} (J a)] {Q : ObjectProperty C} (h : P Q) :

    Given P : ObjectProperty C and a family of categories J : α → Type _, this property objects contains P and all objects that are equal to lim F for some functor F : J a ⥤ C such that F.obj j satisfies P for any j.

    Equations
    Instances For
      @[reducible, inline]
      abbrev CategoryTheory.ObjectProperty.strictLimitsClosureIter {C : Type u} [Category.{v, u} C] (P : ObjectProperty C) {α : Type t} (J : αType u') [(a : α) → Category.{v', u'} (J a)] {β : Type w'} [LinearOrder β] [SuccOrder β] [WellFoundedLT β] (b : β) :

      Given P : ObjectProperty C, a family of categories J a, this is the transfinite iteration of Q ↦ Q.strictLimitsClosureStep J.

      Equations
      Instances For
        theorem CategoryTheory.ObjectProperty.le_strictLimitsClosureIter {C : Type u} [Category.{v, u} C] (P : ObjectProperty C) {α : Type t} (J : αType u') [(a : α) → Category.{v', u'} (J a)] {β : Type w'} [LinearOrder β] [OrderBot β] [SuccOrder β] [WellFoundedLT β] (b : β) :