Smallness of a property of objects #
In this file, given P : ObjectProperty C, we define
ObjectProperty.Small.{w} P as an abbreviation for Small.{w} (Subtype P).
@[reducible, inline]
abbrev
CategoryTheory.ObjectProperty.Small
{C : Type u}
[Category.{v, u} C]
(P : ObjectProperty C)
:
A property of objects is small relative to a universe w
if the corresponding subtype is.
Equations
Instances For
instance
CategoryTheory.ObjectProperty.instSmallFullSubcategoryOfSmall
{C : Type u}
[Category.{v, u} C]
(P : ObjectProperty C)
[ObjectProperty.Small.{w, v, u} P]
:
theorem
CategoryTheory.ObjectProperty.Small.of_le
{C : Type u}
[Category.{v, u} C]
{P Q : ObjectProperty C}
[ObjectProperty.Small.{w, v, u} Q]
(h : P ≤ Q)
:
instance
CategoryTheory.ObjectProperty.instSmallOppositeOp
{C : Type u}
[Category.{v, u} C]
(P : ObjectProperty C)
[ObjectProperty.Small.{w, v, u} P]
:
instance
CategoryTheory.ObjectProperty.instSmallUnopOfOpposite
{C : Type u}
[Category.{v, u} C]
(P : ObjectProperty Cᵒᵖ)
[ObjectProperty.Small.{w, v, u} P]
:
instance
CategoryTheory.ObjectProperty.instSmallOfObjOfSmall
{C : Type u}
[Category.{v, u} C]
{ι : Type u_1}
(X : ι → C)
[Small.{w, u_1} ι]
:
instance
CategoryTheory.ObjectProperty.instSmallMin
{C : Type u}
[Category.{v, u} C]
{P Q : ObjectProperty C}
[ObjectProperty.Small.{w, v, u} Q]
:
ObjectProperty.Small.{w, v, u} (P ⊓ Q)
instance
CategoryTheory.ObjectProperty.instSmallMin_1
{C : Type u}
[Category.{v, u} C]
{P Q : ObjectProperty C}
[ObjectProperty.Small.{w, v, u} P]
:
ObjectProperty.Small.{w, v, u} (P ⊓ Q)
instance
CategoryTheory.ObjectProperty.instSmallMax
{C : Type u}
[Category.{v, u} C]
{P Q : ObjectProperty C}
[ObjectProperty.Small.{w, v, u} P]
[ObjectProperty.Small.{w, v, u} Q]
:
ObjectProperty.Small.{w, v, u} (P ⊔ Q)
instance
CategoryTheory.ObjectProperty.instSmallISupOfSmall
{C : Type u}
[Category.{v, u} C]
{α : Type u_1}
(P : α → ObjectProperty C)
[∀ (a : α), ObjectProperty.Small.{w, v, u} (P a)]
[Small.{w, u_1} α]
:
ObjectProperty.Small.{w, v, u} (⨆ (a : α), P a)
class
CategoryTheory.ObjectProperty.EssentiallySmall
{C : Type u}
[Category.{v, u} C]
(P : ObjectProperty C)
:
A property of objects is essentially small relative to a universe w
if it is contained in the closure by isomorphisms of a small property.
- exists_small_le' : ∃ (Q : ObjectProperty C) (_ : ObjectProperty.Small.{w, v, u} Q), P ≤ Q.isoClosure
Instances
theorem
CategoryTheory.ObjectProperty.EssentiallySmall.exists_small_le
{C : Type u}
[Category.{v, u} C]
(P : ObjectProperty C)
[ObjectProperty.EssentiallySmall.{w, v, u} P]
:
∃ (Q : ObjectProperty C) (_ : ObjectProperty.Small.{w, v, u} Q), Q ≤ P ∧ P ≤ Q.isoClosure
theorem
CategoryTheory.ObjectProperty.EssentiallySmall.exists_small
{C : Type u}
[Category.{v, u} C]
(P : ObjectProperty C)
[P.IsClosedUnderIsomorphisms]
[ObjectProperty.EssentiallySmall.{w, v, u} P]
:
∃ (P₀ : ObjectProperty C) (_ : ObjectProperty.Small.{w, v, u} P₀), P = P₀.isoClosure
theorem
CategoryTheory.ObjectProperty.EssentiallySmall.of_le
{C : Type u}
[Category.{v, u} C]
{P Q : ObjectProperty C}
[ObjectProperty.EssentiallySmall.{w, v, u} Q]
(h : P ≤ Q)
:
instance
CategoryTheory.ObjectProperty.instEssentiallySmallMax
{C : Type u}
[Category.{v, u} C]
{P Q : ObjectProperty C}
[ObjectProperty.EssentiallySmall.{w, v, u} P]
[ObjectProperty.EssentiallySmall.{w, v, u} Q]
:
instance
CategoryTheory.ObjectProperty.instEssentiallySmallISupOfSmall
{C : Type u}
[Category.{v, u} C]
{α : Type u_1}
(P : α → ObjectProperty C)
[∀ (a : α), ObjectProperty.EssentiallySmall.{w, v, u} (P a)]
[Small.{w, u_1} α]
:
ObjectProperty.EssentiallySmall.{w, v, u} (⨆ (a : α), P a)