Smallness of a property of objects #
In this file, given P : ObjectProperty C
, we define
ObjectProperty.Small.{w} P
as an abbreviation for Small.{w} (Subtype P)
.
@[reducible, inline]
abbrev
CategoryTheory.ObjectProperty.Small
{C : Type u}
[Category.{v, u} C]
(P : ObjectProperty C)
:
A property of objects is small relative to a universe w
if the corresponding subtype is.
Equations
Instances For
instance
CategoryTheory.ObjectProperty.instSmallFullSubcategoryOfSmall
{C : Type u}
[Category.{v, u} C]
(P : ObjectProperty C)
[ObjectProperty.Small.{w, v, u} P]
:
theorem
CategoryTheory.ObjectProperty.Small.of_le
{C : Type u}
[Category.{v, u} C]
{P Q : ObjectProperty C}
[ObjectProperty.Small.{w, v, u} Q]
(h : P ≤ Q)
:
instance
CategoryTheory.ObjectProperty.instSmallOppositeOp
{C : Type u}
[Category.{v, u} C]
(P : ObjectProperty C)
[ObjectProperty.Small.{w, v, u} P]
:
instance
CategoryTheory.ObjectProperty.instSmallUnopOfOpposite
{C : Type u}
[Category.{v, u} C]
(P : ObjectProperty Cᵒᵖ)
[ObjectProperty.Small.{w, v, u} P]
:
instance
CategoryTheory.ObjectProperty.instSmallOfObjOfSmall
{C : Type u}
[Category.{v, u} C]
{ι : Type u_1}
(X : ι → C)
[Small.{w, u_1} ι]
: