Transfinite iteration of a function I → I #
Given φ : I → I where [SupSet I], we define the jth transfinite iteration of φ
for any j : J, with J a well-ordered type: this is transfiniteIterate φ j : I → I.
If i₀ : I, then transfiniteIterate φ ⊥ i₀ = i₀; if j is a non-maximal element,
then transfiniteIterate φ (Order.succ j) i₀ = φ (transfiniteIterate φ j i₀); and
if j is a limit element, transfiniteIterate φ j i₀ is the supremum
of the transfiniteIterate φ l i₀ for l < j.
If I is a complete lattice, we show that j ↦ transfiniteIterate φ j i₀ is
a monotone function if i ≤ φ i for all i. Moreover, if i < φ i
when i ≠ ⊤, we show in the lemma top_mem_range_transfiniteIteration that
there exists j : J such that transfiniteIteration φ i₀ j = ⊤ if we assume that
j ↦ transfiniteIterate φ i₀ j : J → I is not injective (which shall hold
when we know Cardinal.mk I < Cardinal.mk J).
TODO (@joelriou) #
- deduce that in a Grothendieck abelian category, there is a set
Iof monomorphisms such that any monomorphism is a transfinite composition of pushouts of morphisms inI, and then an objectXis injective iffX ⟶ 0has the right lifting property with respect toI.
The jth-iteration of a function φ : I → I when j : J belongs to
a well-ordered type.
Equations
- One or more equations did not get rendered due to their size.