Transfinite iteration of a function I → I
#
Given φ : I → I
where [SupSet I]
, we define the j
th transfinite iteration of φ
for any j : J
, with J
a well-ordered type: this is transfiniteIterate φ j : I → I
.
If i₀ : I
, then transfiniteIterate φ ⊥ i₀ = i₀
; if j
is a non maximal element,
than transfiniteIterate φ (Order.succ j) i₀ = φ (transfiniteIterate φ j i₀)
; and
if j
is a limit element, transfiniteIterate φ j i₀
is the supremum
of the transfiniteIterate φ l i₀
for l < j
.
If I
is a complete lattice, we show that j ↦ transfiniteIterate φ j i₀
is
a monotone function if i ≤ φ i
for all i
. Moreover, if i < φ i
when i ≠ ⊤
, we show in the lemma top_mem_range_transfiniteIteration
that
there exists j : J
such that transfiniteIteration φ i₀ j = ⊤
if we assume that
j ↦ transfiniteIterate φ i₀ j : J → I
is not injective (which shall hold
when we know Cardinal.mk I < Cardinal.mk J
).
TODO (@joelriou) #
- deduce that in a Grothendieck abelian category, there is a set
I
of monomorphisms such that any monomorphism is a transfinite composition of pushouts of morphisms inI
, and then an objectX
is injective iffX ⟶ 0
has the right lifting property with respect toI
.
The j
th-iteration of a function φ : I → I
when j : J
belongs to
a well-ordered type.
Equations
- One or more equations did not get rendered due to their size.