Documentation

Mathlib.CategoryTheory.Presentable.Limits

Colimits of presentable objects #

In this file, we show that κ-accessible functors (to the category of types) are stable under limits indexed by a category K such that HasCardinalLT (Arrow K) κ. In particular, κ-presentable objects are stable by colimits indexed by a category K such that HasCardinalLT (Arrow K) κ.

theorem CategoryTheory.Functor.Accessible.Limits.isColimitMapCocone.surjective {C : Type u} [Category.{v, u} C] {K : Type u'} [Category.{v', u'} K] {F : Functor K (Functor C (Type w'))} (c : Limits.Cone F) (hc : (Y : C) → Limits.IsLimit (((evaluation C (Type w')).obj Y).mapCone c)) (κ : Cardinal.{w}) [Fact κ.IsRegular] (hK : HasCardinalLT (Arrow K) κ) {J : Type w} [SmallCategory J] [IsCardinalFiltered J κ] {X : Functor J C} (cX : Limits.Cocone X) (hF : (k : K) → Limits.IsColimit ((F.obj k).mapCocone cX)) (x : c.pt.obj cX.pt) :
∃ (j : J) (x' : c.pt.obj (X.obj j)), x = (c.pt.mapCocone cX).ι.app j x'
theorem CategoryTheory.Functor.Accessible.Limits.isColimitMapCocone.injective {C : Type u} [Category.{v, u} C] {K : Type u'} [Category.{v', u'} K] {F : Functor K (Functor C (Type w'))} (c : Limits.Cone F) (hc : (Y : C) → Limits.IsLimit (((evaluation C (Type w')).obj Y).mapCone c)) (κ : Cardinal.{w}) [Fact κ.IsRegular] (hK : HasCardinalLT (Arrow K) κ) {J : Type w} [SmallCategory J] [IsCardinalFiltered J κ] {X : Functor J C} (cX : Limits.Cocone X) (hF : (k : K) → Limits.IsColimit ((F.obj k).mapCocone cX)) (j : J) (x₁ x₂ : c.pt.obj (X.obj j)) (h : c.pt.map (cX.ι.app j) x₁ = c.pt.map (cX.ι.app j) x₂) :
∃ (j' : J) (α : j j'), c.pt.map (X.map α) x₁ = c.pt.map (X.map α) x₂