Limits of epimorphisms in coherent topoi #
This file proves that a sequential limit of epimorphisms is epimorphic in the category of sheaves for the coherent topology on a preregular finitary extensive category where sequential limits of effective epimorphisms are effective epimorphisms.
In other words, given epimorphisms of sheaves
⋯ ⟶ Xₙ₊₁ ⟶ Xₙ ⟶ ⋯ ⟶ X₀
,
the projection map lim Xₙ ⟶ X₀
is an epimorphism (see coherentTopology.epi_π_app_zero_of_epi
).
This is deduced from the corresponding statement about locally surjective morphisms of sheaves
(see coherentTopology.isLocallySurjective_π_app_zero_of_isLocallySurjective_map
).
theorem
CategoryTheory.coherentTopology.isLocallySurjective_π_app_zero_of_isLocallySurjective_map
{C : Type u}
[Category.{v, u} C]
[Preregular C]
[FinitaryExtensive C]
{F : Functor ℕᵒᵖ (Sheaf (coherentTopology C) (Type v))}
{c : Limits.Cone F}
(hc : Limits.IsLimit c)
(hF : ∀ (n : ℕ), Sheaf.IsLocallySurjective (F.map (homOfLE ⋯).op))
[Limits.HasLimitsOfShape ℕᵒᵖ C]
(h :
∀ (G : Functor ℕᵒᵖ C),
(∀ (n : ℕ), EffectiveEpi (G.map (homOfLE ⋯).op)) → EffectiveEpi (Limits.limit.π G (Opposite.op 0)))
:
Sheaf.IsLocallySurjective (c.π.app (Opposite.op 0))
theorem
CategoryTheory.coherentTopology.epi_π_app_zero_of_epi
{C : Type u}
[Category.{v, u} C]
[Preregular C]
[FinitaryExtensive C]
[Limits.HasLimitsOfShape ℕᵒᵖ C]
(h :
∀ (G : Functor ℕᵒᵖ C),
(∀ (n : ℕ), EffectiveEpi (G.map (homOfLE ⋯).op)) → EffectiveEpi (Limits.limit.π G (Opposite.op 0)))
[HasSheafify (coherentTopology C) (Type v)]
[Balanced (Sheaf (coherentTopology C) (Type v))]
[(coherentTopology C).WEqualsLocallyBijective (Type v)]
{F : Functor ℕᵒᵖ (Sheaf (coherentTopology C) (Type v))}
{c : Limits.Cone F}
(hc : Limits.IsLimit c)
(hF : ∀ (n : ℕ), Epi (F.map (homOfLE ⋯).op))
:
Epi (c.π.app (Opposite.op 0))