Limits of epimorphisms in coherent topoi #
This file proves that a sequential limit of epimorphisms is epimorphic in the category of sheaves for the coherent topology on a preregular finitary extensive category where sequential limits of effective epimorphisms are effective epimorphisms.
In other words, given epimorphisms of sheaves
⋯ ⟶ Xₙ₊₁ ⟶ Xₙ ⟶ ⋯ ⟶ X₀
,
the projection map lim Xₙ ⟶ X₀
is an epimorphism (see coherentTopology.epi_π_app_zero_of_epi
).
This is deduced from the corresponding statement about locally surjective morphisms of sheaves
(see coherentTopology.isLocallySurjective_π_app_zero_of_isLocallySurjective_map
).
theorem
CategoryTheory.coherentTopology.isLocallySurjective_π_app_zero_of_isLocallySurjective_map
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Preregular C]
[CategoryTheory.FinitaryExtensive C]
{F : CategoryTheory.Functor ℕᵒᵖ (CategoryTheory.Sheaf (CategoryTheory.coherentTopology C) (Type v))}
{c : CategoryTheory.Limits.Cone F}
(hc : CategoryTheory.Limits.IsLimit c)
(hF : ∀ (n : ℕ), CategoryTheory.Sheaf.IsLocallySurjective (F.map (CategoryTheory.homOfLE ⋯).op))
[CategoryTheory.Limits.HasLimitsOfShape ℕᵒᵖ C]
(h :
∀ (G : CategoryTheory.Functor ℕᵒᵖ C),
(∀ (n : ℕ), CategoryTheory.EffectiveEpi (G.map (CategoryTheory.homOfLE ⋯).op)) →
CategoryTheory.EffectiveEpi (CategoryTheory.Limits.limit.π G (Opposite.op 0)))
:
CategoryTheory.Sheaf.IsLocallySurjective (c.π.app (Opposite.op 0))
theorem
CategoryTheory.coherentTopology.epi_π_app_zero_of_epi
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Preregular C]
[CategoryTheory.FinitaryExtensive C]
[CategoryTheory.Limits.HasLimitsOfShape ℕᵒᵖ C]
(h :
∀ (G : CategoryTheory.Functor ℕᵒᵖ C),
(∀ (n : ℕ), CategoryTheory.EffectiveEpi (G.map (CategoryTheory.homOfLE ⋯).op)) →
CategoryTheory.EffectiveEpi (CategoryTheory.Limits.limit.π G (Opposite.op 0)))
[CategoryTheory.HasSheafify (CategoryTheory.coherentTopology C) (Type v)]
[CategoryTheory.Balanced (CategoryTheory.Sheaf (CategoryTheory.coherentTopology C) (Type v))]
[(CategoryTheory.coherentTopology C).WEqualsLocallyBijective (Type v)]
{F : CategoryTheory.Functor ℕᵒᵖ (CategoryTheory.Sheaf (CategoryTheory.coherentTopology C) (Type v))}
{c : CategoryTheory.Limits.Cone F}
(hc : CategoryTheory.Limits.IsLimit c)
(hF : ∀ (n : ℕ), CategoryTheory.Epi (F.map (CategoryTheory.homOfLE ⋯).op))
:
CategoryTheory.Epi (c.π.app (Opposite.op 0))