Documentation

Mathlib.CategoryTheory.Sums.Products

Functors out of sums of categories. #

This file records the universal property of sums of categories as an equivalence of categories Sum.functorEquiv : A ⊕ A' ⥤ B ≌ (A ⥤ B) × (A' ⥤ B), and characterizes its precompositions with the left and right inclusion as corresponding to the projections on the product side.

The equivalence between functors from a sum and the product of the functor categories.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    @[simp]
    theorem CategoryTheory.Sum.functorEquiv_inverse_map (A : Type u_1) [Category.{u_3, u_1} A] (A' : Type u_2) [Category.{u_4, u_2} A'] (B : Type u) [Category.{v, u} B] {X✝ Y✝ : Functor A B × Functor A' B} (η : X✝ Y✝) :
    (functorEquiv A A' B).inverse.map η = NatTrans.sum' η.1 η.2
    @[simp]
    theorem CategoryTheory.Sum.functorEquiv_functor_obj (A : Type u_1) [Category.{u_3, u_1} A] (A' : Type u_2) [Category.{u_4, u_2} A'] (B : Type u) [Category.{v, u} B] (F : Functor (A A') B) :
    (functorEquiv A A' B).functor.obj F = ((inl_ A A').comp F, (inr_ A A').comp F)
    @[simp]
    theorem CategoryTheory.Sum.functorEquiv_functor_map (A : Type u_1) [Category.{u_3, u_1} A] (A' : Type u_2) [Category.{u_4, u_2} A'] (B : Type u) [Category.{v, u} B] {X✝ Y✝ : Functor (A A') B} (η : X✝ Y✝) :
    (functorEquiv A A' B).functor.map η = (whiskerLeft (inl_ A A') η, whiskerLeft (inr_ A A') η)
    @[simp]
    @[simp]
    @[simp]
    @[simp]
    theorem CategoryTheory.Sum.functorEquiv_unit_app_app_inr {A : Type u_1} [Category.{u_3, u_1} A] {A' : Type u_2} [Category.{u_4, u_2} A'] {B : Type u} [Category.{v, u} B] (X : Functor (A A') B) (a' : A') :

    Composing the forward direction of functorEquiv with the first projection is the same as precomposition with inl_ A A'.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For

      Composing the forward direction of functorEquiv with the second projection is the same as precomposition with inr_ A A'.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For

        Composing the backward direction of functorEquiv with precomposition with inl_ A A'. is naturally isomorphic to the first projection.

        Equations
        Instances For

          Composing the backward direction of functorEquiv with the second projection is the same as precomposition with inr_ A A'.

          Equations
          Instances For
            def CategoryTheory.Sum.natTransOfWhiskerLeftInlInr {A : Type u_1} [Category.{u_3, u_1} A] {A' : Type u_2} [Category.{u_4, u_2} A'] {B : Type u} [Category.{v, u} B] {F G : Functor (A A') B} (η₁ : (inl_ A A').comp F (inl_ A A').comp G) (η₂ : (inr_ A A').comp F (inr_ A A').comp G) :
            F G

            A consequence of functorEquiv: we can construct a natural transformation of functors A ⊕ A' ⥤ B from the data of natural transformations of their whiskering with inl_ and inr_.

            Equations
            • One or more equations did not get rendered due to their size.
            Instances For
              @[simp]
              theorem CategoryTheory.Sum.natTransOfWhiskerLeftInlInr_app {A : Type u_1} [Category.{u_3, u_1} A] {A' : Type u_2} [Category.{u_4, u_2} A'] {B : Type u} [Category.{v, u} B] {F G : Functor (A A') B} (η₁ : (inl_ A A').comp F (inl_ A A').comp G) (η₂ : (inr_ A A').comp F (inr_ A A').comp G) (X : A A') :
              @[simp]
              theorem CategoryTheory.Sum.natTransOfWhiskerLeftInlInr_comp {A : Type u_1} [Category.{u_3, u_1} A] {A' : Type u_2} [Category.{u_4, u_2} A'] {B : Type u} [Category.{v, u} B] {F G H : Functor (A A') B} (η₁ : (inl_ A A').comp F (inl_ A A').comp G) (η₂ : (inr_ A A').comp F (inr_ A A').comp G) (ν₁ : (inl_ A A').comp G (inl_ A A').comp H) (ν₂ : (inr_ A A').comp G (inr_ A A').comp H) :
              def CategoryTheory.Sum.natIsoOfWhiskerLeftInlInr {A : Type u_1} [Category.{u_3, u_1} A] {A' : Type u_2} [Category.{u_4, u_2} A'] {B : Type u} [Category.{v, u} B] {F G : Functor (A A') B} (η₁ : (inl_ A A').comp F (inl_ A A').comp G) (η₂ : (inr_ A A').comp F (inr_ A A').comp G) :
              F G

              A consequence of functorEquiv: we can construct a natural isomorphism of functors A ⊕ A' ⥤ B from the data of natural isomorphisms of their whiskering with inl_ and inr_.

              Equations
              • One or more equations did not get rendered due to their size.
              Instances For
                @[simp]
                theorem CategoryTheory.Sum.natIsoOfWhiskerLeftInlInr_hom {A : Type u_1} [Category.{u_3, u_1} A] {A' : Type u_2} [Category.{u_4, u_2} A'] {B : Type u} [Category.{v, u} B] {F G : Functor (A A') B} (η₁ : (inl_ A A').comp F (inl_ A A').comp G) (η₂ : (inr_ A A').comp F (inr_ A A').comp G) :
                @[simp]
                theorem CategoryTheory.Sum.natIsoOfWhiskerLeftInlInr_inv {A : Type u_1} [Category.{u_3, u_1} A] {A' : Type u_2} [Category.{u_4, u_2} A'] {B : Type u} [Category.{v, u} B] {F G : Functor (A A') B} (η₁ : (inl_ A A').comp F (inl_ A A').comp G) (η₂ : (inr_ A A').comp F (inr_ A A').comp G) :
                theorem CategoryTheory.Sum.natIsoOfWhiskerLeftInlInr_eq {A : Type u_1} [Category.{u_3, u_1} A] {A' : Type u_2} [Category.{u_4, u_2} A'] {B : Type u} [Category.{v, u} B] {F G : Functor (A A') B} (η₁ : (inl_ A A').comp F (inl_ A A').comp G) (η₂ : (inr_ A A').comp F (inr_ A A').comp G) :

                functorEquiv A A' B transforms Swap.equivalence into Prod.braiding.

                Equations
                • One or more equations did not get rendered due to their size.
                Instances For

                  The equivalence Sum.functorEquiv sends associativity of sums to associativity of products

                  Equations
                  • One or more equations did not get rendered due to their size.
                  Instances For