Schröder numbers #
The Schröder numbers (https://oeis.org/A006318) are a sequence of integers that appear in various combinatorial contexts.
Main definitions #
largeSchroder n: thenth large Schröder number, defined recursively asL 0 = 1andL (n + 1) = L n + ∑ i ≤ n, L i * L (n - i).smallSchroder n: thenth small Schröder number, defined asS 0 = 1andS n = L n / 2forn > 0.
Main results #
largeSchroder_even: The large Schröder numbers are positive and even forn > 0.smallSchroder_succ: A recursive formula for small Schröder numbers:S (n + 1) = 3 * S n + 2 * ∑ i < n - 2, S (i + 2) * S (n - 1 - i).
Tags #
Schroeder, Schroder
@[irreducible]
The recursive definition of the sequence of the large Schröder numbers :
a (n + 1) = a n + ∑ i : Fin n.succ, a i * a (n - i)
Equations
- Nat.largeSchroder 0 = 1
- n.succ.largeSchroder = n.largeSchroder + ∑ i : Fin n.succ, (↑i).largeSchroder * (n - ↑i).largeSchroder
Instances For
theorem
Nat.largeSchroder_succ
(n : ℕ)
:
(n + 1).largeSchroder = n.largeSchroder + ∑ i ∈ Finset.Iic n, i.largeSchroder * (n - i).largeSchroder
The small Schröder number is equal to : largeSchroder n = 2 * smallSchroder (n + 1), n ≥ 1
Equations
- Nat.smallSchroder 0 = 1
- Nat.smallSchroder 1 = 1
- n.succ.smallSchroder = n.largeSchroder / 2
Instances For
theorem
Nat.smallSchroder_succ
{n : ℕ}
(hn : 1 < n)
:
(n + 1).smallSchroder = 3 * n.smallSchroder + 2 * ∑ i ∈ Finset.Ioo 0 (n - 1), (i + 1).smallSchroder * (n - i).smallSchroder