Documentation

Mathlib.Condensed.Discrete.Module

Discrete condensed R-modules #

This file provides the necessary API to prove that a condensed R-module is discrete if and only if the underlying condensed set is (both for light condensed and condensed).

That is, it defines the functor CondensedMod.LocallyConstant.functor which takes an R-module to the condensed R-modules given by locally constant maps to it, and proves that this functor is naturally isomorphic to the constant sheaf functor (and the analogues for light condensed modules).

The functor from the category of R-modules to presheaves on CompHausLike P given by locally constant maps.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    @[simp]
    theorem CompHausLike.LocallyConstantModule.functorToPresheaves_map_app_hom {P : TopCatProp} (R : Type (max u w)) [Ring R] {X✝ Y✝ : ModuleCat R} (f : X✝ Y✝) (S : (CompHausLike P)ᵒᵖ) :
    (((functorToPresheaves R).map f).app S).hom = LocallyConstant.mapₗ R f.hom
    @[simp]
    theorem CompHausLike.LocallyConstantModule.functorToPresheaves_obj_obj_carrier {P : TopCatProp} (R : Type (max u w)) [Ring R] (X : ModuleCat R) (x✝ : (CompHausLike P)ᵒᵖ) :
    (((functorToPresheaves R).obj X).obj x✝) = LocallyConstant (Opposite.unop x✝).toTop X
    @[simp]
    theorem CompHausLike.LocallyConstantModule.functorToPresheaves_obj_map_hom {P : TopCatProp} (R : Type (max u w)) [Ring R] (X : ModuleCat R) {X✝ Y✝ : (CompHausLike P)ᵒᵖ} (f : X✝ Y✝) :
    (((functorToPresheaves R).obj X).map f).hom = LocallyConstant.comapₗ R f.unop

    CompHausLike.LocallyConstantModule.functorToPresheaves lands in sheaves.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      @[simp]
      theorem CompHausLike.LocallyConstantModule.functor_map_val {P : TopCatProp} (R : Type (max u w)) [Ring R] [HasExplicitFiniteCoproducts P] [HasExplicitPullbacks P] (hs : ∀ ⦃X Y : CompHausLike P⦄ (f : X Y), CategoryTheory.EffectiveEpi fFunction.Surjective f) {X✝ Y✝ : ModuleCat R} (f : X✝ Y✝) :
      ((functor R hs).map f).val = (functorToPresheaves R).map f
      @[simp]
      theorem CompHausLike.LocallyConstantModule.functor_obj_val {P : TopCatProp} (R : Type (max u w)) [Ring R] [HasExplicitFiniteCoproducts P] [HasExplicitPullbacks P] (hs : ∀ ⦃X Y : CompHausLike P⦄ (f : X Y), CategoryTheory.EffectiveEpi fFunction.Surjective f) (X : ModuleCat R) :
      ((functor R hs).obj X).val = (functorToPresheaves R).obj X

      Auxiliary definition for functorIsoDiscrete.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        noncomputable def CondensedMod.LocallyConstant.functorIsoDiscreteComponents (R : Type (u + 1)) [Ring R] (M : ModuleCat R) :
        (Condensed.discrete (ModuleCat R)).obj M (functor R).obj M

        Auxiliary definition for functorIsoDiscrete.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For

          CondensedMod.LocallyConstant.functor is naturally isomorphic to the constant sheaf functor from R-modules to condensed R-modules.

          Equations
          Instances For

            CondensedMod.LocallyConstant.functor is left adjoint to the forgetful functor from condensed R-modules to R-modules.

            Equations
            Instances For
              noncomputable def CondensedMod.LocallyConstant.fullyFaithfulFunctor (R : Type (u + 1)) [Ring R] :
              (functor R).FullyFaithful

              CondensedMod.LocallyConstant.functor is fully faithful.

              Equations
              • One or more equations did not get rendered due to their size.
              Instances For

                Auxiliary definition for functorIsoDiscrete.

                Equations
                • One or more equations did not get rendered due to their size.
                Instances For

                  Auxiliary definition for functorIsoDiscrete.

                  Equations
                  • One or more equations did not get rendered due to their size.
                  Instances For

                    LightCondMod.LocallyConstant.functor is naturally isomorphic to the constant sheaf functor from R-modules to light condensed R-modules.

                    Equations
                    Instances For

                      LightCondMod.LocallyConstant.functor is left adjoint to the forgetful functor from light condensed R-modules to R-modules.

                      Equations
                      Instances For
                        noncomputable def LightCondMod.LocallyConstant.fullyFaithfulFunctor (R : Type u) [Ring R] :
                        (functor R).FullyFaithful

                        LightCondMod.LocallyConstant.functor is fully faithful.

                        Equations
                        • One or more equations did not get rendered due to their size.
                        Instances For