Documentation

Mathlib.Data.DFinsupp.Lex

Lexicographic order on finitely supported dependent functions #

This file defines the lexicographic order on DFinsupp.

def DFinsupp.Lex {ι : Type u_1} {α : ιType u_2} [(i : ι) → Zero (α i)] (r : ιιProp) (s : (i : ι) → α iα iProp) (x y : Π₀ (i : ι), α i) :

DFinsupp.Lex r s is the lexicographic relation on Π₀ i, α i, where ι is ordered by r, and α i is ordered by s i.

The type synonym Lex (Π₀ i, α i) has an order given by DFinsupp.Lex (· < ·) (· < ·), whereas Colex (Π₀ i, α i) has an order given by DFinsupp.Lex (· > ·) (· < ·).

Equations
Instances For
    theorem Pi.lex_eq_dfinsupp_lex {ι : Type u_1} {α : ιType u_2} [(i : ι) → Zero (α i)] {r : ιιProp} {s : (i : ι) → α iα iProp} (a b : Π₀ (i : ι), α i) :
    Pi.Lex r (fun {i : ι} => s i) a b = DFinsupp.Lex r s a b
    theorem DFinsupp.lex_def {ι : Type u_1} {α : ιType u_2} [(i : ι) → Zero (α i)] {r : ιιProp} {s : (i : ι) → α iα iProp} {a b : Π₀ (i : ι), α i} :
    DFinsupp.Lex r s a b ∃ (j : ι), (∀ (d : ι), r d ja d = b d) s j (a j) (b j)
    instance DFinsupp.instLTLex {ι : Type u_1} {α : ιType u_2} [(i : ι) → Zero (α i)] [LT ι] [(i : ι) → LT (α i)] :
    LT (Lex (Π₀ (i : ι), α i))
    Equations
    instance DFinsupp.instLTColex {ι : Type u_1} {α : ιType u_2} [(i : ι) → Zero (α i)] [LT ι] [(i : ι) → LT (α i)] :
    LT (Colex (Π₀ (i : ι), α i))
    Equations
    theorem DFinsupp.Lex.lt_iff {ι : Type u_1} {α : ιType u_2} [(i : ι) → Zero (α i)] [LT ι] [(i : ι) → LT (α i)] {a b : Lex (Π₀ (i : ι), α i)} :
    a < b ∃ (i : ι), (∀ j < i, (ofLex a) j = (ofLex b) j) (ofLex a) i < (ofLex b) i
    @[deprecated DFinsupp.Lex.lt_iff (since := "2025-11-29")]
    theorem DFinsupp.lex_lt_iff {ι : Type u_1} {α : ιType u_2} [(i : ι) → Zero (α i)] [LT ι] [(i : ι) → LT (α i)] {a b : Lex (Π₀ (i : ι), α i)} :
    a < b ∃ (i : ι), (∀ j < i, (ofLex a) j = (ofLex b) j) (ofLex a) i < (ofLex b) i

    Alias of DFinsupp.Lex.lt_iff.

    theorem DFinsupp.Colex.lt_iff {ι : Type u_1} {α : ιType u_2} [(i : ι) → Zero (α i)] [LT ι] [(i : ι) → LT (α i)] {a b : Colex (Π₀ (i : ι), α i)} :
    a < b ∃ (i : ι), (∀ (j : ι), i < j(ofColex a) j = (ofColex b) j) (ofColex a) i < (ofColex b) i
    theorem DFinsupp.lex_lt_of_lt_of_preorder {ι : Type u_1} {α : ιType u_2} [(i : ι) → Zero (α i)] [(i : ι) → Preorder (α i)] (r : ιιProp) [IsStrictOrder ι r] {x y : Π₀ (i : ι), α i} (hlt : x < y) :
    ∃ (i : ι), (∀ (j : ι), r j ix j y j y j x j) x i < y i
    theorem DFinsupp.lex_lt_of_lt {ι : Type u_1} {α : ιType u_2} [(i : ι) → Zero (α i)] [(i : ι) → PartialOrder (α i)] (r : ιιProp) [IsStrictOrder ι r] {x y : Π₀ (i : ι), α i} (hlt : x < y) :
    Pi.Lex r (fun {i : ι} (x1 x2 : α i) => x1 < x2) x y
    theorem DFinsupp.lex_iff_of_unique {ι : Type u_1} {α : ιType u_2} [(i : ι) → Zero (α i)] [Unique ι] [(i : ι) → LT (α i)] {r : ιιProp} [IsIrrefl ι r] {x y : Π₀ (i : ι), α i} :
    DFinsupp.Lex r (fun (x : ι) (x1 x2 : α x) => x1 < x2) x y x default < y default
    theorem DFinsupp.Lex.lt_iff_of_unique {ι : Type u_1} {α : ιType u_2} [(i : ι) → Zero (α i)] [Unique ι] [(i : ι) → LT (α i)] [Preorder ι] {x y : Lex (Π₀ (i : ι), α i)} :
    @[deprecated DFinsupp.Lex.lt_iff_of_unique (since := "2025-11-29")]
    theorem DFinsupp.lex_lt_iff_of_unique {ι : Type u_1} {α : ιType u_2} [(i : ι) → Zero (α i)] [Unique ι] [(i : ι) → LT (α i)] [Preorder ι] {x y : Lex (Π₀ (i : ι), α i)} :

    Alias of DFinsupp.Lex.lt_iff_of_unique.

    theorem DFinsupp.colex_lt_iff_of_unique {ι : Type u_1} {α : ιType u_2} [(i : ι) → Zero (α i)] [Unique ι] [(i : ι) → LT (α i)] [Preorder ι] {x y : Colex (Π₀ (i : ι), α i)} :
    instance DFinsupp.Lex.isStrictOrder {ι : Type u_1} {α : ιType u_2} [(i : ι) → Zero (α i)] [LinearOrder ι] [(i : ι) → PartialOrder (α i)] :
    IsStrictOrder (Lex (Π₀ (i : ι), α i)) fun (x1 x2 : Lex (Π₀ (i : ι), α i)) => x1 < x2
    instance DFinsupp.Colex.isStrictOrder {ι : Type u_1} {α : ιType u_2} [(i : ι) → Zero (α i)] [LinearOrder ι] [(i : ι) → PartialOrder (α i)] :
    IsStrictOrder (Colex (Π₀ (i : ι), α i)) fun (x1 x2 : Colex (Π₀ (i : ι), α i)) => x1 < x2
    instance DFinsupp.Lex.partialOrder {ι : Type u_1} {α : ιType u_2} [(i : ι) → Zero (α i)] [LinearOrder ι] [(i : ι) → PartialOrder (α i)] :
    PartialOrder (Lex (Π₀ (i : ι), α i))

    The partial order on DFinsupps obtained by the lexicographic ordering. See DFinsupp.Lex.linearOrder for a proof that this partial order is in fact linear.

    Equations
    • One or more equations did not get rendered due to their size.
    instance DFinsupp.Colex.partialOrder {ι : Type u_1} {α : ιType u_2} [(i : ι) → Zero (α i)] [LinearOrder ι] [(i : ι) → PartialOrder (α i)] :
    PartialOrder (Colex (Π₀ (i : ι), α i))

    The partial order on DFinsupps obtained by the colexicographic ordering. See DFinsupp.Colex.linearOrder for a proof that this partial order is in fact linear.

    Equations
    • One or more equations did not get rendered due to their size.
    theorem DFinsupp.Lex.le_iff_of_unique {ι : Type u_1} {α : ιType u_2} [(i : ι) → Zero (α i)] [LinearOrder ι] [Unique ι] [(i : ι) → PartialOrder (α i)] {x y : Lex (Π₀ (i : ι), α i)} :
    @[deprecated DFinsupp.Lex.le_iff_of_unique (since := "2025-11-29")]
    theorem DFinsupp.lex_le_iff_of_unique {ι : Type u_1} {α : ιType u_2} [(i : ι) → Zero (α i)] [LinearOrder ι] [Unique ι] [(i : ι) → PartialOrder (α i)] {x y : Lex (Π₀ (i : ι), α i)} :

    Alias of DFinsupp.Lex.le_iff_of_unique.

    theorem DFinsupp.Colex.le_iff_of_unique {ι : Type u_1} {α : ιType u_2} [(i : ι) → Zero (α i)] [LinearOrder ι] [Unique ι] [(i : ι) → PartialOrder (α i)] {x y : Colex (Π₀ (i : ι), α i)} :
    instance DFinsupp.Lex.isTotal_le {ι : Type u_1} {α : ιType u_2} [(i : ι) → Zero (α i)] [LinearOrder ι] [(i : ι) → LinearOrder (α i)] :
    IsTotal (Lex (Π₀ (i : ι), α i)) fun (x1 x2 : Lex (Π₀ (i : ι), α i)) => x1 x2
    instance DFinsupp.Colex.isTotal_le {ι : Type u_1} {α : ιType u_2} [(i : ι) → Zero (α i)] [LinearOrder ι] [(i : ι) → LinearOrder (α i)] :
    IsTotal (Colex (Π₀ (i : ι), α i)) fun (x1 x2 : Colex (Π₀ (i : ι), α i)) => x1 x2
    instance DFinsupp.Lex.decidableLE {ι : Type u_1} {α : ιType u_2} [(i : ι) → Zero (α i)] [LinearOrder ι] [(i : ι) → LinearOrder (α i)] :
    DecidableLE (Lex (Π₀ (i : ι), α i))

    The less-or-equal relation for the lexicographic ordering is decidable.

    Equations
    • One or more equations did not get rendered due to their size.
    instance DFinsupp.Colex.decidableLE {ι : Type u_1} {α : ιType u_2} [(i : ι) → Zero (α i)] [LinearOrder ι] [(i : ι) → LinearOrder (α i)] :
    DecidableLE (Colex (Π₀ (i : ι), α i))

    The less-or-equal relation for the colexicographic ordering is decidable.

    Equations
    instance DFinsupp.Lex.decidableLT {ι : Type u_1} {α : ιType u_2} [(i : ι) → Zero (α i)] [LinearOrder ι] [(i : ι) → LinearOrder (α i)] :
    DecidableLT (Lex (Π₀ (i : ι), α i))

    The less-than relation for the lexicographic ordering is decidable.

    Equations
    • One or more equations did not get rendered due to their size.
    instance DFinsupp.Colex.decidableLT {ι : Type u_1} {α : ιType u_2} [(i : ι) → Zero (α i)] [LinearOrder ι] [(i : ι) → LinearOrder (α i)] :
    DecidableLT (Colex (Π₀ (i : ι), α i))

    The less-than relation for the colexicographic ordering is decidable.

    Equations
    instance DFinsupp.Lex.linearOrder {ι : Type u_1} {α : ιType u_2} [(i : ι) → Zero (α i)] [LinearOrder ι] [(i : ι) → LinearOrder (α i)] :
    LinearOrder (Lex (Π₀ (i : ι), α i))

    The linear order on DFinsupps obtained by the lexicographic ordering.

    Equations
    • One or more equations did not get rendered due to their size.
    instance DFinsupp.Colex.linearOrder {ι : Type u_1} {α : ιType u_2} [(i : ι) → Zero (α i)] [LinearOrder ι] [(i : ι) → LinearOrder (α i)] :
    LinearOrder (Colex (Π₀ (i : ι), α i))

    The linear order on DFinsupps obtained by the colexicographic ordering.

    Equations
    • One or more equations did not get rendered due to their size.
    theorem DFinsupp.toLex_monotone {ι : Type u_1} {α : ιType u_2} [(i : ι) → Zero (α i)] [LinearOrder ι] [(i : ι) → PartialOrder (α i)] :
    theorem DFinsupp.toColex_monotone {ι : Type u_1} {α : ιType u_2} [(i : ι) → Zero (α i)] [LinearOrder ι] [(i : ι) → PartialOrder (α i)] :
    @[deprecated DFinsupp.Lex.lt_iff (since := "2025-10-12")]
    theorem DFinsupp.lt_of_forall_lt_of_lt {ι : Type u_1} {α : ιType u_2} [(i : ι) → Zero (α i)] [LinearOrder ι] [(i : ι) → PartialOrder (α i)] (a b : Lex (Π₀ (i : ι), α i)) (i : ι) :
    (∀ j < i, (ofLex a) j = (ofLex b) j)(ofLex a) i < (ofLex b) ia < b

    We are about to sneak in a hypothesis that might appear to be too strong. We assume AddLeftStrictMono (covariant with strict inequality <) also when proving the one with the weak inequality . This is actually necessary: addition on Lex (Π₀ i, α i) may fail to be monotone, when it is "just" monotone on α i.

    instance DFinsupp.Lex.addLeftStrictMono {ι : Type u_1} {α : ιType u_2} [LinearOrder ι] [(i : ι) → AddMonoid (α i)] [(i : ι) → LinearOrder (α i)] [∀ (i : ι), AddLeftStrictMono (α i)] :
    AddLeftStrictMono (Lex (Π₀ (i : ι), α i))
    instance DFinsupp.Colex.addLeftStrictMono {ι : Type u_1} {α : ιType u_2} [LinearOrder ι] [(i : ι) → AddMonoid (α i)] [(i : ι) → LinearOrder (α i)] [∀ (i : ι), AddLeftStrictMono (α i)] :
    AddLeftStrictMono (Colex (Π₀ (i : ι), α i))
    instance DFinsupp.Lex.addLeftMono {ι : Type u_1} {α : ιType u_2} [LinearOrder ι] [(i : ι) → AddMonoid (α i)] [(i : ι) → LinearOrder (α i)] [∀ (i : ι), AddLeftStrictMono (α i)] :
    AddLeftMono (Lex (Π₀ (i : ι), α i))
    instance DFinsupp.Colex.addLeftMono {ι : Type u_1} {α : ιType u_2} [LinearOrder ι] [(i : ι) → AddMonoid (α i)] [(i : ι) → LinearOrder (α i)] [∀ (i : ι), AddLeftStrictMono (α i)] :
    AddLeftMono (Colex (Π₀ (i : ι), α i))
    instance DFinsupp.Lex.addRightStrictMono {ι : Type u_1} {α : ιType u_2} [LinearOrder ι] [(i : ι) → AddMonoid (α i)] [(i : ι) → LinearOrder (α i)] [∀ (i : ι), AddRightStrictMono (α i)] :
    AddRightStrictMono (Lex (Π₀ (i : ι), α i))
    instance DFinsupp.Colex.addRightStrictMono {ι : Type u_1} {α : ιType u_2} [LinearOrder ι] [(i : ι) → AddMonoid (α i)] [(i : ι) → LinearOrder (α i)] [∀ (i : ι), AddRightStrictMono (α i)] :
    AddRightStrictMono (Colex (Π₀ (i : ι), α i))
    instance DFinsupp.Lex.addRightMono {ι : Type u_1} {α : ιType u_2} [LinearOrder ι] [(i : ι) → AddMonoid (α i)] [(i : ι) → LinearOrder (α i)] [∀ (i : ι), AddRightStrictMono (α i)] :
    AddRightMono (Lex (Π₀ (i : ι), α i))
    instance DFinsupp.Colex.addRightMono {ι : Type u_1} {α : ιType u_2} [LinearOrder ι] [(i : ι) → AddMonoid (α i)] [(i : ι) → LinearOrder (α i)] [∀ (i : ι), AddRightStrictMono (α i)] :
    AddRightMono (Colex (Π₀ (i : ι), α i))
    instance DFinsupp.Lex.orderBot {ι : Type u_1} {α : ιType u_2} [LinearOrder ι] [(i : ι) → AddCommMonoid (α i)] [(i : ι) → PartialOrder (α i)] [∀ (i : ι), CanonicallyOrderedAdd (α i)] :
    OrderBot (Lex (Π₀ (i : ι), α i))
    Equations
    instance DFinsupp.Colex.orderBot {ι : Type u_1} {α : ιType u_2} [LinearOrder ι] [(i : ι) → AddCommMonoid (α i)] [(i : ι) → PartialOrder (α i)] [∀ (i : ι), CanonicallyOrderedAdd (α i)] :
    OrderBot (Colex (Π₀ (i : ι), α i))
    Equations
    instance DFinsupp.Lex.isOrderedCancelAddMonoid {ι : Type u_1} {α : ιType u_2} [LinearOrder ι] [(i : ι) → AddCommMonoid (α i)] [(i : ι) → PartialOrder (α i)] [∀ (i : ι), IsOrderedCancelAddMonoid (α i)] :
    instance DFinsupp.Colex.isOrderedCancelAddMonoid {ι : Type u_1} {α : ιType u_2} [LinearOrder ι] [(i : ι) → AddCommMonoid (α i)] [(i : ι) → PartialOrder (α i)] [∀ (i : ι), IsOrderedCancelAddMonoid (α i)] :
    instance DFinsupp.Lex.isOrderedAddMonoid {ι : Type u_1} {α : ιType u_2} [LinearOrder ι] [(i : ι) → AddCommGroup (α i)] [(i : ι) → PartialOrder (α i)] [∀ (i : ι), IsOrderedAddMonoid (α i)] :
    IsOrderedAddMonoid (Lex (Π₀ (i : ι), α i))
    instance DFinsupp.Colex.isOrderedAddMonoid {ι : Type u_1} {α : ιType u_2} [LinearOrder ι] [(i : ι) → AddCommGroup (α i)] [(i : ι) → PartialOrder (α i)] [∀ (i : ι), IsOrderedAddMonoid (α i)] :
    IsOrderedAddMonoid (Colex (Π₀ (i : ι), α i))