Documentation

Mathlib.Data.Finsupp.Order

Pointwise order on finitely supported functions #

This file lifts order structures on α to ι →₀ α.

Main declarations #

Order structures #

theorem Finsupp.sum_le_sum {ι : Type u_1} {α : Type u_3} {β : Type u_4} [Zero α] [AddCommMonoid β] [PartialOrder β] [IsOrderedAddMonoid β] {f : ι →₀ α} {h₁ h₂ : ιαβ} (h : if.support, h₁ i (f i) h₂ i (f i)) :
f.sum h₁ f.sum h₂
@[simp]
theorem Finsupp.single_le_single {ι : Type u_1} {α : Type u_3} [Zero α] [Preorder α] {i : ι} {a b : α} :
single i a single i b a b
theorem Finsupp.single_mono {ι : Type u_1} {α : Type u_3} [Zero α] [Preorder α] {i : ι} :
theorem Finsupp.GCongr.single_mono {ι : Type u_1} {α : Type u_3} [Zero α] [Preorder α] {i : ι} {a b : α} :
a bsingle i a single i b

Alias of the reverse direction of Finsupp.single_le_single.

@[simp]
theorem Finsupp.single_nonneg {ι : Type u_1} {α : Type u_3} [Zero α] [Preorder α] {i : ι} {a : α} :
0 single i a 0 a
@[simp]
theorem Finsupp.single_nonpos {ι : Type u_1} {α : Type u_3} [Zero α] [Preorder α] {i : ι} {a : α} :
single i a 0 a 0
theorem Finsupp.sum_le_sum_index {ι : Type u_1} {α : Type u_3} {β : Type u_4} [Zero α] [Preorder α] [AddCommMonoid β] [PartialOrder β] [IsOrderedAddMonoid β] [DecidableEq ι] {f₁ f₂ : ι →₀ α} {h : ιαβ} (hf : f₁ f₂) (hh : if₁.support f₂.support, Monotone (h i)) (hh₀ : if₁.support f₂.support, h i 0 = 0) :
f₁.sum h f₂.sum h

Algebraic order structures #

theorem Finsupp.mapDomain_mono {ι : Type u_1} {κ : Type u_2} {α : Type u_3} [AddCommMonoid α] [PartialOrder α] [IsOrderedAddMonoid α] {f : ικ} :
theorem Finsupp.GCongr.mapDomain_mono {ι : Type u_1} {κ : Type u_2} {α : Type u_3} [AddCommMonoid α] [PartialOrder α] [IsOrderedAddMonoid α] {f : ικ} {g₁ g₂ : ι →₀ α} (hg : g₁ g₂) :
mapDomain f g₁ mapDomain f g₂
theorem Finsupp.mapDomain_nonneg {ι : Type u_1} {κ : Type u_2} {α : Type u_3} [AddCommMonoid α] [PartialOrder α] [IsOrderedAddMonoid α] {f : ικ} {g : ι →₀ α} (hg : 0 g) :
theorem Finsupp.mapDomain_nonpos {ι : Type u_1} {κ : Type u_2} {α : Type u_3} [AddCommMonoid α] [PartialOrder α] [IsOrderedAddMonoid α] {f : ικ} {g : ι →₀ α} (hg : g 0) :
instance Finsupp.instPosSMulMono {ι : Type u_1} {α : Type u_3} {β : Type u_4} [Zero α] [Preorder α] [Zero β] [Preorder β] [SMulZeroClass α β] [PosSMulMono α β] :
PosSMulMono α (ι →₀ β)
instance Finsupp.instSMulPosMono {ι : Type u_1} {α : Type u_3} {β : Type u_4} [Preorder α] [Zero β] [Preorder β] [SMulZeroClass α β] [SMulPosMono α β] :
SMulPosMono α (ι →₀ β)
instance Finsupp.instPosSMulReflectLE {ι : Type u_1} {α : Type u_3} {β : Type u_4} [Zero α] [Preorder α] [Zero β] [Preorder β] [SMulZeroClass α β] [PosSMulReflectLE α β] :
instance Finsupp.instSMulPosReflectLE {ι : Type u_1} {α : Type u_3} {β : Type u_4} [Preorder α] [Zero β] [Preorder β] [SMulZeroClass α β] [SMulPosReflectLE α β] :
instance Finsupp.instPosSMulStrictMono {ι : Type u_1} {α : Type u_3} {β : Type u_4} [Zero α] [PartialOrder α] [Zero β] [PartialOrder β] [SMulWithZero α β] [PosSMulStrictMono α β] :
instance Finsupp.instSMulPosStrictMono {ι : Type u_1} {α : Type u_3} {β : Type u_4} [Zero α] [PartialOrder α] [Zero β] [PartialOrder β] [SMulWithZero α β] [SMulPosStrictMono α β] :
instance Finsupp.instSMulPosReflectLT {ι : Type u_1} {α : Type u_3} {β : Type u_4} [Zero α] [PartialOrder α] [Zero β] [PartialOrder β] [SMulWithZero α β] [SMulPosReflectLT α β] :
instance Finsupp.orderBot {ι : Type u_1} {α : Type u_3} [AddCommMonoid α] [PartialOrder α] [CanonicallyOrderedAdd α] :
Equations
@[simp]
theorem Finsupp.add_eq_zero_iff {ι : Type u_1} {α : Type u_3} [AddCommMonoid α] [PartialOrder α] [CanonicallyOrderedAdd α] (f g : ι →₀ α) :
f + g = 0 f = 0 g = 0
theorem Finsupp.le_iff' {ι : Type u_1} {α : Type u_3} [AddCommMonoid α] [PartialOrder α] [CanonicallyOrderedAdd α] (f g : ι →₀ α) {s : Finset ι} (hf : f.support s) :
f g is, f i g i
theorem Finsupp.le_iff {ι : Type u_1} {α : Type u_3} [AddCommMonoid α] [PartialOrder α] [CanonicallyOrderedAdd α] (f g : ι →₀ α) :
f g if.support, f i g i
theorem Finsupp.support_mono {ι : Type u_1} {α : Type u_3} [AddCommMonoid α] [PartialOrder α] [CanonicallyOrderedAdd α] {f g : ι →₀ α} (hfg : f g) :
instance Finsupp.decidableLE {ι : Type u_1} {α : Type u_3} [AddCommMonoid α] [PartialOrder α] [CanonicallyOrderedAdd α] [DecidableLE α] :
Equations
@[simp]
theorem Finsupp.single_le_iff {ι : Type u_1} {α : Type u_3} [AddCommMonoid α] [PartialOrder α] [CanonicallyOrderedAdd α] {i : ι} {x : α} {f : ι →₀ α} :
single i x f x f i
instance Finsupp.tsub {ι : Type u_1} {α : Type u_3} [AddCommMonoid α] [PartialOrder α] [CanonicallyOrderedAdd α] [Sub α] [OrderedSub α] :
Sub (ι →₀ α)

This is called tsub for truncated subtraction, to distinguish it with subtraction in an additive group.

Equations
instance Finsupp.orderedSub {ι : Type u_1} {α : Type u_3} [AddCommMonoid α] [PartialOrder α] [CanonicallyOrderedAdd α] [Sub α] [OrderedSub α] :
instance Finsupp.instCanonicallyOrderedAddOfCovariantClassHAddLe {ι : Type u_1} {α : Type u_3} [AddCommMonoid α] [PartialOrder α] [CanonicallyOrderedAdd α] [Sub α] [OrderedSub α] [CovariantClass α α (fun (x1 x2 : α) => x1 + x2) fun (x1 x2 : α) => x1 x2] :
@[simp]
theorem Finsupp.coe_tsub {ι : Type u_1} {α : Type u_3} [AddCommMonoid α] [PartialOrder α] [CanonicallyOrderedAdd α] [Sub α] [OrderedSub α] (f g : ι →₀ α) :
⇑(f - g) = f - g
theorem Finsupp.tsub_apply {ι : Type u_1} {α : Type u_3} [AddCommMonoid α] [PartialOrder α] [CanonicallyOrderedAdd α] [Sub α] [OrderedSub α] (f g : ι →₀ α) (a : ι) :
(f - g) a = f a - g a
@[simp]
theorem Finsupp.single_tsub {ι : Type u_1} {α : Type u_3} [AddCommMonoid α] [PartialOrder α] [CanonicallyOrderedAdd α] [Sub α] [OrderedSub α] {i : ι} {a b : α} :
single i (a - b) = single i a - single i b
theorem Finsupp.support_tsub {ι : Type u_1} {α : Type u_3} [AddCommMonoid α] [PartialOrder α] [CanonicallyOrderedAdd α] [Sub α] [OrderedSub α] {f1 f2 : ι →₀ α} :
(f1 - f2).support f1.support
theorem Finsupp.subset_support_tsub {ι : Type u_1} {α : Type u_3} [AddCommMonoid α] [PartialOrder α] [CanonicallyOrderedAdd α] [Sub α] [OrderedSub α] [DecidableEq ι] {f1 f2 : ι →₀ α} :
f1.support \ f2.support (f1 - f2).support
@[simp]
theorem Finsupp.support_inf {ι : Type u_1} {α : Type u_3} [AddCommMonoid α] [LinearOrder α] [CanonicallyOrderedAdd α] [DecidableEq ι] (f g : ι →₀ α) :
(fg).support = f.support g.support
@[simp]
theorem Finsupp.support_sup {ι : Type u_1} {α : Type u_3} [AddCommMonoid α] [LinearOrder α] [CanonicallyOrderedAdd α] [DecidableEq ι] (f g : ι →₀ α) :
(fg).support = f.support g.support
theorem Finsupp.disjoint_iff {ι : Type u_1} {α : Type u_3} [AddCommMonoid α] [LinearOrder α] [CanonicallyOrderedAdd α] {f g : ι →₀ α} :

Some lemmas about #

theorem Finsupp.sub_single_one_add {ι : Type u_1} {a : ι} {u u' : ι →₀ } (h : u a 0) :
u - single a 1 + u' = u + u' - single a 1
theorem Finsupp.add_sub_single_one {ι : Type u_1} {a : ι} {u u' : ι →₀ } (h : u' a 0) :
u + (u' - single a 1) = u + u' - single a 1
theorem Finsupp.sub_add_single_one_cancel {ι : Type u_1} {u : ι →₀ } {i : ι} (h : u i 0) :
u - single i 1 + single i 1 = u