Documentation

Mathlib.Data.Matrix.Basic

Matrices #

This file contains basic results on matrices including bundled versions of matrix operators.

Implementation notes #

For convenience, Matrix m n α is defined as m → n → α, as this allows elements of the matrix to be accessed with A i j. However, it is not advisable to construct matrices using terms of the form fun i j ↦ _ or even (fun i j ↦ _ : Matrix m n α), as these are not recognized by Lean as having the right type. Instead, Matrix.of should be used.

TODO #

Under various conditions, multiplication of infinite matrices makes sense. These have not yet been implemented.

instance Matrix.instFintypeOfDecidableEq {n : Type u_10} {m : Type u_11} [Fintype m] [DecidableEq m] [Fintype n] [DecidableEq n] (α : Type u_12) [Fintype α] :
Fintype (Matrix m n α)
Equations
instance Matrix.instFinite {n : Type u_10} {m : Type u_11} [Finite m] [Finite n] (α : Type u_12) [Finite α] :
Finite (Matrix m n α)
def Matrix.ofLinearEquiv {m : Type u_2} {n : Type u_3} (R : Type u_7) {α : Type v} [Semiring R] [AddCommMonoid α] [Module R α] :
(mnα) ≃ₗ[R] Matrix m n α

This is Matrix.of bundled as a linear equivalence.

Equations
Instances For
    @[simp]
    theorem Matrix.coe_ofLinearEquiv {m : Type u_2} {n : Type u_3} (R : Type u_7) {α : Type v} [Semiring R] [AddCommMonoid α] [Module R α] :
    (ofLinearEquiv R) = of
    @[simp]
    theorem Matrix.coe_ofLinearEquiv_symm {m : Type u_2} {n : Type u_3} (R : Type u_7) {α : Type v} [Semiring R] [AddCommMonoid α] [Module R α] :
    (ofLinearEquiv R).symm = of.symm
    theorem Matrix.sum_apply {m : Type u_2} {n : Type u_3} {α : Type v} {β : Type w} [AddCommMonoid α] (i : m) (j : n) (s : Finset β) (g : βMatrix m n α) :
    (∑ cs, g c) i j = cs, g c i j
    def Matrix.diagonalAddMonoidHom (n : Type u_3) (α : Type v) [DecidableEq n] [AddZeroClass α] :
    (nα) →+ Matrix n n α

    Matrix.diagonal as an AddMonoidHom.

    Equations
    Instances For
      @[simp]
      theorem Matrix.diagonalAddMonoidHom_apply (n : Type u_3) (α : Type v) [DecidableEq n] [AddZeroClass α] (d : nα) :
      def Matrix.diagonalLinearMap (n : Type u_3) (R : Type u_7) (α : Type v) [DecidableEq n] [Semiring R] [AddCommMonoid α] [Module R α] :
      (nα) →ₗ[R] Matrix n n α

      Matrix.diagonal as a LinearMap.

      Equations
      Instances For
        @[simp]
        theorem Matrix.diagonalLinearMap_apply (n : Type u_3) (R : Type u_7) (α : Type v) [DecidableEq n] [Semiring R] [AddCommMonoid α] [Module R α] (a✝ : nα) :
        (diagonalLinearMap n R α) a✝ = (↑(diagonalAddMonoidHom n α)).toFun a✝
        theorem Matrix.zero_le_one_elem {n : Type u_3} {α : Type v} [DecidableEq n] [Zero α] [One α] [Preorder α] [ZeroLEOneClass α] (i j : n) :
        0 1 i j
        theorem Matrix.zero_le_one_row {n : Type u_3} {α : Type v} [DecidableEq n] [Zero α] [One α] [Preorder α] [ZeroLEOneClass α] (i : n) :
        0 1 i
        def Matrix.diagAddMonoidHom (n : Type u_3) (α : Type v) [AddZeroClass α] :
        Matrix n n α →+ nα

        Matrix.diag as an AddMonoidHom.

        Equations
        Instances For
          @[simp]
          theorem Matrix.diagAddMonoidHom_apply (n : Type u_3) (α : Type v) [AddZeroClass α] (A : Matrix n n α) (i : n) :
          (diagAddMonoidHom n α) A i = A.diag i
          def Matrix.diagLinearMap (n : Type u_3) (R : Type u_7) (α : Type v) [Semiring R] [AddCommMonoid α] [Module R α] :
          Matrix n n α →ₗ[R] nα

          Matrix.diag as a LinearMap.

          Equations
          Instances For
            @[simp]
            theorem Matrix.diagLinearMap_apply (n : Type u_3) (R : Type u_7) (α : Type v) [Semiring R] [AddCommMonoid α] [Module R α] (a✝ : Matrix n n α) (a✝¹ : n) :
            (diagLinearMap n R α) a✝ a✝¹ = (↑(diagAddMonoidHom n α)).toFun a✝ a✝¹
            @[simp]
            theorem Matrix.diag_list_sum {n : Type u_3} {α : Type v} [AddMonoid α] (l : List (Matrix n n α)) :
            l.sum.diag = (List.map diag l).sum
            @[simp]
            theorem Matrix.diag_multiset_sum {n : Type u_3} {α : Type v} [AddCommMonoid α] (s : Multiset (Matrix n n α)) :
            s.sum.diag = (Multiset.map diag s).sum
            @[simp]
            theorem Matrix.diag_sum {n : Type u_3} {α : Type v} {ι : Type u_10} [AddCommMonoid α] (s : Finset ι) (f : ιMatrix n n α) :
            (∑ is, f i).diag = is, (f i).diag
            def Matrix.diagonalRingHom (n : Type u_3) (α : Type v) [NonAssocSemiring α] [Fintype n] [DecidableEq n] :
            (nα) →+* Matrix n n α

            Matrix.diagonal as a RingHom.

            Equations
            Instances For
              @[simp]
              theorem Matrix.diagonalRingHom_apply (n : Type u_3) (α : Type v) [NonAssocSemiring α] [Fintype n] [DecidableEq n] (d : nα) :
              theorem Matrix.diagonal_pow {n : Type u_3} {α : Type v} [Semiring α] [Fintype n] [DecidableEq n] (v : nα) (k : ) :
              diagonal v ^ k = diagonal (v ^ k)
              def Matrix.scalar {α : Type v} [Semiring α] (n : Type u) [DecidableEq n] [Fintype n] :
              α →+* Matrix n n α

              The ring homomorphism α →+* Matrix n n α sending a to the diagonal matrix with a on the diagonal.

              Equations
              Instances For
                @[simp]
                theorem Matrix.scalar_apply {n : Type u_3} {α : Type v} [Semiring α] [DecidableEq n] [Fintype n] (a : α) :
                (scalar n) a = diagonal fun (x : n) => a
                theorem Matrix.scalar_inj {n : Type u_3} {α : Type v} [Semiring α] [DecidableEq n] [Fintype n] [Nonempty n] {r s : α} :
                (scalar n) r = (scalar n) s r = s
                theorem Matrix.scalar_commute_iff {n : Type u_3} {α : Type v} [Semiring α] [DecidableEq n] [Fintype n] {r : α} {M : Matrix n n α} :
                theorem Matrix.scalar_commute {n : Type u_3} {α : Type v} [Semiring α] [DecidableEq n] [Fintype n] (r : α) (hr : ∀ (r' : α), Commute r r') (M : Matrix n n α) :
                Commute ((scalar n) r) M
                instance Matrix.instAlgebra {n : Type u_3} {R : Type u_7} {α : Type v} [Fintype n] [DecidableEq n] [CommSemiring R] [Semiring α] [Algebra R α] :
                Algebra R (Matrix n n α)
                Equations
                theorem Matrix.algebraMap_matrix_apply {n : Type u_3} {R : Type u_7} {α : Type v} [Fintype n] [DecidableEq n] [CommSemiring R] [Semiring α] [Algebra R α] {r : R} {i j : n} :
                (algebraMap R (Matrix n n α)) r i j = if i = j then (algebraMap R α) r else 0
                theorem Matrix.algebraMap_eq_diagonal {n : Type u_3} {R : Type u_7} {α : Type v} [Fintype n] [DecidableEq n] [CommSemiring R] [Semiring α] [Algebra R α] (r : R) :
                (algebraMap R (Matrix n n α)) r = diagonal ((algebraMap R (nα)) r)
                theorem Matrix.algebraMap_eq_diagonalRingHom {n : Type u_3} {R : Type u_7} {α : Type v} [Fintype n] [DecidableEq n] [CommSemiring R] [Semiring α] [Algebra R α] :
                algebraMap R (Matrix n n α) = (diagonalRingHom n α).comp (algebraMap R (nα))
                @[simp]
                theorem Matrix.map_algebraMap {n : Type u_3} {R : Type u_7} {α : Type v} {β : Type w} [Fintype n] [DecidableEq n] [CommSemiring R] [Semiring α] [Semiring β] [Algebra R α] [Algebra R β] (r : R) (f : αβ) (hf : f 0 = 0) (hf₂ : f ((algebraMap R α) r) = (algebraMap R β) r) :
                ((algebraMap R (Matrix n n α)) r).map f = (algebraMap R (Matrix n n β)) r
                def Matrix.diagonalAlgHom {n : Type u_3} (R : Type u_7) {α : Type v} [Fintype n] [DecidableEq n] [CommSemiring R] [Semiring α] [Algebra R α] :
                (nα) →ₐ[R] Matrix n n α

                Matrix.diagonal as an AlgHom.

                Equations
                Instances For
                  @[simp]
                  theorem Matrix.diagonalAlgHom_apply {n : Type u_3} (R : Type u_7) {α : Type v} [Fintype n] [DecidableEq n] [CommSemiring R] [Semiring α] [Algebra R α] (d : nα) :
                  def Matrix.entryAddHom {m : Type u_2} {n : Type u_3} (α : Type v) [Add α] (i : m) (j : n) :
                  Matrix m n α →ₙ+ α

                  Extracting entries from a matrix as an additive homomorphism.

                  Equations
                  Instances For
                    @[simp]
                    theorem Matrix.entryAddHom_apply {m : Type u_2} {n : Type u_3} (α : Type v) [Add α] (i : m) (j : n) (M : Matrix m n α) :
                    (entryAddHom α i j) M = M i j
                    theorem Matrix.entryAddHom_eq_comp {m : Type u_2} {n : Type u_3} {α : Type v} [Add α] {i : m} {j : n} :
                    entryAddHom α i j = ((Pi.evalAddHom (fun (x : n) => α) j).comp (Pi.evalAddHom (fun (i : m) => nα) i)).comp ofAddEquiv.symm
                    def Matrix.entryAddMonoidHom {m : Type u_2} {n : Type u_3} (α : Type v) [AddZeroClass α] (i : m) (j : n) :
                    Matrix m n α →+ α

                    Extracting entries from a matrix as an additive monoid homomorphism. Note this cannot be upgraded to a ring homomorphism, as it does not respect multiplication.

                    Equations
                    Instances For
                      @[simp]
                      theorem Matrix.entryAddMonoidHom_apply {m : Type u_2} {n : Type u_3} (α : Type v) [AddZeroClass α] (i : m) (j : n) (M : Matrix m n α) :
                      (entryAddMonoidHom α i j) M = M i j
                      theorem Matrix.entryAddMonoidHom_eq_comp {m : Type u_2} {n : Type u_3} {α : Type v} [AddZeroClass α] {i : m} {j : n} :
                      entryAddMonoidHom α i j = ((Pi.evalAddMonoidHom (fun (x : n) => α) j).comp (Pi.evalAddMonoidHom (fun (i : m) => nα) i)).comp ofAddEquiv.symm
                      @[simp]
                      theorem Matrix.evalAddMonoidHom_comp_diagAddMonoidHom {m : Type u_2} {α : Type v} [AddZeroClass α] (i : m) :
                      (Pi.evalAddMonoidHom (fun (i : m) => α) i).comp (diagAddMonoidHom m α) = entryAddMonoidHom α i i
                      @[simp]
                      theorem Matrix.entryAddMonoidHom_toAddHom {m : Type u_2} {n : Type u_3} {α : Type v} [AddZeroClass α] {i : m} {j : n} :
                      (entryAddMonoidHom α i j) = entryAddHom α i j
                      def Matrix.entryLinearMap {m : Type u_2} {n : Type u_3} (R : Type u_7) (α : Type v) [Semiring R] [AddCommMonoid α] [Module R α] (i : m) (j : n) :
                      Matrix m n α →ₗ[R] α

                      Extracting entries from a matrix as a linear map. Note this cannot be upgraded to an algebra homomorphism, as it does not respect multiplication.

                      Equations
                      Instances For
                        @[simp]
                        theorem Matrix.entryLinearMap_apply {m : Type u_2} {n : Type u_3} (R : Type u_7) (α : Type v) [Semiring R] [AddCommMonoid α] [Module R α] (i : m) (j : n) (M : Matrix m n α) :
                        (entryLinearMap R α i j) M = M i j
                        theorem Matrix.entryLinearMap_eq_comp {m : Type u_2} {n : Type u_3} {R : Type u_7} {α : Type v} [Semiring R] [AddCommMonoid α] [Module R α] {i : m} {j : n} :
                        @[simp]
                        theorem Matrix.proj_comp_diagLinearMap {m : Type u_2} {R : Type u_7} {α : Type v} [Semiring R] [AddCommMonoid α] [Module R α] (i : m) :
                        @[simp]
                        theorem Matrix.entryLinearMap_toAddMonoidHom {m : Type u_2} {n : Type u_3} {R : Type u_7} {α : Type v} [Semiring R] [AddCommMonoid α] [Module R α] {i : m} {j : n} :
                        (entryLinearMap R α i j) = entryAddMonoidHom α i j
                        @[simp]
                        theorem Matrix.entryLinearMap_toAddHom {m : Type u_2} {n : Type u_3} {R : Type u_7} {α : Type v} [Semiring R] [AddCommMonoid α] [Module R α] {i : m} {j : n} :
                        (entryLinearMap R α i j) = entryAddHom α i j

                        Bundled versions of Matrix.map #

                        def Equiv.mapMatrix {m : Type u_2} {n : Type u_3} {α : Type v} {β : Type w} (f : α β) :
                        Matrix m n α Matrix m n β

                        The Equiv between spaces of matrices induced by an Equiv between their coefficients. This is Matrix.map as an Equiv.

                        Equations
                        • f.mapMatrix = { toFun := fun (M : Matrix m n α) => M.map f, invFun := fun (M : Matrix m n β) => M.map f.symm, left_inv := , right_inv := }
                        Instances For
                          @[simp]
                          theorem Equiv.mapMatrix_apply {m : Type u_2} {n : Type u_3} {α : Type v} {β : Type w} (f : α β) (M : Matrix m n α) :
                          f.mapMatrix M = M.map f
                          @[simp]
                          theorem Equiv.mapMatrix_refl {m : Type u_2} {n : Type u_3} {α : Type v} :
                          (Equiv.refl α).mapMatrix = Equiv.refl (Matrix m n α)
                          @[simp]
                          theorem Equiv.mapMatrix_symm {m : Type u_2} {n : Type u_3} {α : Type v} {β : Type w} (f : α β) :
                          f.mapMatrix.symm = f.symm.mapMatrix
                          @[simp]
                          theorem Equiv.mapMatrix_trans {m : Type u_2} {n : Type u_3} {α : Type v} {β : Type w} {γ : Type u_9} (f : α β) (g : β γ) :
                          f.mapMatrix.trans g.mapMatrix = (f.trans g).mapMatrix
                          def AddMonoidHom.mapMatrix {m : Type u_2} {n : Type u_3} {α : Type v} {β : Type w} [AddZeroClass α] [AddZeroClass β] (f : α →+ β) :
                          Matrix m n α →+ Matrix m n β

                          The AddMonoidHom between spaces of matrices induced by an AddMonoidHom between their coefficients. This is Matrix.map as an AddMonoidHom.

                          Equations
                          • f.mapMatrix = { toFun := fun (M : Matrix m n α) => M.map f, map_zero' := , map_add' := }
                          Instances For
                            @[simp]
                            theorem AddMonoidHom.mapMatrix_apply {m : Type u_2} {n : Type u_3} {α : Type v} {β : Type w} [AddZeroClass α] [AddZeroClass β] (f : α →+ β) (M : Matrix m n α) :
                            f.mapMatrix M = M.map f
                            @[simp]
                            theorem AddMonoidHom.mapMatrix_id {m : Type u_2} {n : Type u_3} {α : Type v} [AddZeroClass α] :
                            (id α).mapMatrix = id (Matrix m n α)
                            @[simp]
                            theorem AddMonoidHom.mapMatrix_comp {m : Type u_2} {n : Type u_3} {α : Type v} {β : Type w} {γ : Type u_9} [AddZeroClass α] [AddZeroClass β] [AddZeroClass γ] (f : β →+ γ) (g : α →+ β) :
                            f.mapMatrix.comp g.mapMatrix = (f.comp g).mapMatrix
                            @[simp]
                            theorem AddMonoidHom.entryAddMonoidHom_comp_mapMatrix {m : Type u_2} {n : Type u_3} {α : Type v} {β : Type w} [AddZeroClass α] [AddZeroClass β] (f : α →+ β) (i : m) (j : n) :
                            (Matrix.entryAddMonoidHom β i j).comp f.mapMatrix = f.comp (Matrix.entryAddMonoidHom α i j)
                            def AddEquiv.mapMatrix {m : Type u_2} {n : Type u_3} {α : Type v} {β : Type w} [Add α] [Add β] (f : α ≃+ β) :
                            Matrix m n α ≃+ Matrix m n β

                            The AddEquiv between spaces of matrices induced by an AddEquiv between their coefficients. This is Matrix.map as an AddEquiv.

                            Equations
                            • f.mapMatrix = { toFun := fun (M : Matrix m n α) => M.map f, invFun := fun (M : Matrix m n β) => M.map f.symm, left_inv := , right_inv := , map_add' := }
                            Instances For
                              @[simp]
                              theorem AddEquiv.mapMatrix_apply {m : Type u_2} {n : Type u_3} {α : Type v} {β : Type w} [Add α] [Add β] (f : α ≃+ β) (M : Matrix m n α) :
                              f.mapMatrix M = M.map f
                              @[simp]
                              theorem AddEquiv.mapMatrix_refl {m : Type u_2} {n : Type u_3} {α : Type v} [Add α] :
                              (refl α).mapMatrix = refl (Matrix m n α)
                              @[simp]
                              theorem AddEquiv.mapMatrix_symm {m : Type u_2} {n : Type u_3} {α : Type v} {β : Type w} [Add α] [Add β] (f : α ≃+ β) :
                              f.mapMatrix.symm = f.symm.mapMatrix
                              @[simp]
                              theorem AddEquiv.mapMatrix_trans {m : Type u_2} {n : Type u_3} {α : Type v} {β : Type w} {γ : Type u_9} [Add α] [Add β] [Add γ] (f : α ≃+ β) (g : β ≃+ γ) :
                              f.mapMatrix.trans g.mapMatrix = (f.trans g).mapMatrix
                              @[simp]
                              theorem AddEquiv.entryAddHom_comp_mapMatrix {m : Type u_2} {n : Type u_3} {α : Type v} {β : Type w} [Add α] [Add β] (f : α ≃+ β) (i : m) (j : n) :
                              (Matrix.entryAddHom β i j).comp f.mapMatrix = (↑f).comp (Matrix.entryAddHom α i j)
                              def LinearMap.mapMatrix {m : Type u_2} {n : Type u_3} {R : Type u_7} {α : Type v} {β : Type w} [Semiring R] [AddCommMonoid α] [AddCommMonoid β] [Module R α] [Module R β] (f : α →ₗ[R] β) :
                              Matrix m n α →ₗ[R] Matrix m n β

                              The LinearMap between spaces of matrices induced by a LinearMap between their coefficients. This is Matrix.map as a LinearMap.

                              Equations
                              • f.mapMatrix = { toFun := fun (M : Matrix m n α) => M.map f, map_add' := , map_smul' := }
                              Instances For
                                @[simp]
                                theorem LinearMap.mapMatrix_apply {m : Type u_2} {n : Type u_3} {R : Type u_7} {α : Type v} {β : Type w} [Semiring R] [AddCommMonoid α] [AddCommMonoid β] [Module R α] [Module R β] (f : α →ₗ[R] β) (M : Matrix m n α) :
                                f.mapMatrix M = M.map f
                                @[simp]
                                theorem LinearMap.mapMatrix_id {m : Type u_2} {n : Type u_3} {R : Type u_7} {α : Type v} [Semiring R] [AddCommMonoid α] [Module R α] :
                                id.mapMatrix = id
                                @[simp]
                                theorem LinearMap.mapMatrix_comp {m : Type u_2} {n : Type u_3} {R : Type u_7} {α : Type v} {β : Type w} {γ : Type u_9} [Semiring R] [AddCommMonoid α] [AddCommMonoid β] [AddCommMonoid γ] [Module R α] [Module R β] [Module R γ] (f : β →ₗ[R] γ) (g : α →ₗ[R] β) :
                                f.mapMatrix ∘ₗ g.mapMatrix = (f ∘ₗ g).mapMatrix
                                @[simp]
                                theorem LinearMap.entryLinearMap_comp_mapMatrix {m : Type u_2} {n : Type u_3} {R : Type u_7} {α : Type v} {β : Type w} [Semiring R] [AddCommMonoid α] [AddCommMonoid β] [Module R α] [Module R β] (f : α →ₗ[R] β) (i : m) (j : n) :
                                def LinearEquiv.mapMatrix {m : Type u_2} {n : Type u_3} {R : Type u_7} {α : Type v} {β : Type w} [Semiring R] [AddCommMonoid α] [AddCommMonoid β] [Module R α] [Module R β] (f : α ≃ₗ[R] β) :
                                Matrix m n α ≃ₗ[R] Matrix m n β

                                The LinearEquiv between spaces of matrices induced by a LinearEquiv between their coefficients. This is Matrix.map as a LinearEquiv.

                                Equations
                                • f.mapMatrix = { toFun := fun (M : Matrix m n α) => M.map f, map_add' := , map_smul' := , invFun := fun (M : Matrix m n β) => M.map f.symm, left_inv := , right_inv := }
                                Instances For
                                  @[simp]
                                  theorem LinearEquiv.mapMatrix_apply {m : Type u_2} {n : Type u_3} {R : Type u_7} {α : Type v} {β : Type w} [Semiring R] [AddCommMonoid α] [AddCommMonoid β] [Module R α] [Module R β] (f : α ≃ₗ[R] β) (M : Matrix m n α) :
                                  f.mapMatrix M = M.map f
                                  @[simp]
                                  theorem LinearEquiv.mapMatrix_refl {m : Type u_2} {n : Type u_3} {R : Type u_7} {α : Type v} [Semiring R] [AddCommMonoid α] [Module R α] :
                                  (refl R α).mapMatrix = refl R (Matrix m n α)
                                  @[simp]
                                  theorem LinearEquiv.mapMatrix_symm {m : Type u_2} {n : Type u_3} {R : Type u_7} {α : Type v} {β : Type w} [Semiring R] [AddCommMonoid α] [AddCommMonoid β] [Module R α] [Module R β] (f : α ≃ₗ[R] β) :
                                  f.mapMatrix.symm = f.symm.mapMatrix
                                  @[simp]
                                  theorem LinearEquiv.mapMatrix_trans {m : Type u_2} {n : Type u_3} {R : Type u_7} {α : Type v} {β : Type w} {γ : Type u_9} [Semiring R] [AddCommMonoid α] [AddCommMonoid β] [AddCommMonoid γ] [Module R α] [Module R β] [Module R γ] (f : α ≃ₗ[R] β) (g : β ≃ₗ[R] γ) :
                                  f.mapMatrix ≪≫ₗ g.mapMatrix = (f ≪≫ₗ g).mapMatrix
                                  @[simp]
                                  theorem LinearEquiv.mapMatrix_toLinearMap {m : Type u_2} {n : Type u_3} {R : Type u_7} {α : Type v} {β : Type w} [Semiring R] [AddCommMonoid α] [AddCommMonoid β] [Module R α] [Module R β] (f : α ≃ₗ[R] β) :
                                  f.mapMatrix = (↑f).mapMatrix
                                  @[simp]
                                  theorem LinearEquiv.entryLinearMap_comp_mapMatrix {m : Type u_2} {n : Type u_3} {R : Type u_7} {α : Type v} {β : Type w} [Semiring R] [AddCommMonoid α] [AddCommMonoid β] [Module R α] [Module R β] (f : α ≃ₗ[R] β) (i : m) (j : n) :
                                  Matrix.entryLinearMap R β i j ∘ₗ f.mapMatrix = f ∘ₗ Matrix.entryLinearMap R α i j
                                  def RingHom.mapMatrix {m : Type u_2} {α : Type v} {β : Type w} [Fintype m] [DecidableEq m] [NonAssocSemiring α] [NonAssocSemiring β] (f : α →+* β) :
                                  Matrix m m α →+* Matrix m m β

                                  The RingHom between spaces of square matrices induced by a RingHom between their coefficients. This is Matrix.map as a RingHom.

                                  Equations
                                  • f.mapMatrix = { toFun := fun (M : Matrix m m α) => M.map f, map_one' := , map_mul' := , map_zero' := , map_add' := }
                                  Instances For
                                    @[simp]
                                    theorem RingHom.mapMatrix_apply {m : Type u_2} {α : Type v} {β : Type w} [Fintype m] [DecidableEq m] [NonAssocSemiring α] [NonAssocSemiring β] (f : α →+* β) (M : Matrix m m α) :
                                    f.mapMatrix M = M.map f
                                    @[simp]
                                    theorem RingHom.mapMatrix_id {m : Type u_2} {α : Type v} [Fintype m] [DecidableEq m] [NonAssocSemiring α] :
                                    (id α).mapMatrix = id (Matrix m m α)
                                    @[simp]
                                    theorem RingHom.mapMatrix_comp {m : Type u_2} {α : Type v} {β : Type w} {γ : Type u_9} [Fintype m] [DecidableEq m] [NonAssocSemiring α] [NonAssocSemiring β] [NonAssocSemiring γ] (f : β →+* γ) (g : α →+* β) :
                                    f.mapMatrix.comp g.mapMatrix = (f.comp g).mapMatrix
                                    def RingEquiv.mapMatrix {m : Type u_2} {α : Type v} {β : Type w} [Fintype m] [DecidableEq m] [NonAssocSemiring α] [NonAssocSemiring β] (f : α ≃+* β) :
                                    Matrix m m α ≃+* Matrix m m β

                                    The RingEquiv between spaces of square matrices induced by a RingEquiv between their coefficients. This is Matrix.map as a RingEquiv.

                                    Equations
                                    • f.mapMatrix = { toFun := fun (M : Matrix m m α) => M.map f, invFun := fun (M : Matrix m m β) => M.map f.symm, left_inv := , right_inv := , map_mul' := , map_add' := }
                                    Instances For
                                      @[simp]
                                      theorem RingEquiv.mapMatrix_apply {m : Type u_2} {α : Type v} {β : Type w} [Fintype m] [DecidableEq m] [NonAssocSemiring α] [NonAssocSemiring β] (f : α ≃+* β) (M : Matrix m m α) :
                                      f.mapMatrix M = M.map f
                                      @[simp]
                                      theorem RingEquiv.mapMatrix_refl {m : Type u_2} {α : Type v} [Fintype m] [DecidableEq m] [NonAssocSemiring α] :
                                      (refl α).mapMatrix = refl (Matrix m m α)
                                      @[simp]
                                      theorem RingEquiv.mapMatrix_symm {m : Type u_2} {α : Type v} {β : Type w} [Fintype m] [DecidableEq m] [NonAssocSemiring α] [NonAssocSemiring β] (f : α ≃+* β) :
                                      f.mapMatrix.symm = f.symm.mapMatrix
                                      @[simp]
                                      theorem RingEquiv.mapMatrix_trans {m : Type u_2} {α : Type v} {β : Type w} {γ : Type u_9} [Fintype m] [DecidableEq m] [NonAssocSemiring α] [NonAssocSemiring β] [NonAssocSemiring γ] (f : α ≃+* β) (g : β ≃+* γ) :
                                      f.mapMatrix.trans g.mapMatrix = (f.trans g).mapMatrix

                                      For any ring R, we have ring isomorphism Matₙₓₙ(Rᵒᵖ) ≅ (Matₙₓₙ(R))ᵒᵖ given by transpose.

                                      Equations
                                      • One or more equations did not get rendered due to their size.
                                      Instances For
                                        @[simp]
                                        theorem RingEquiv.mopMatrix_symm_apply {m : Type u_2} {α : Type v} [Fintype m] [NonAssocSemiring α] (M : (Matrix m m α)ᵐᵒᵖ) :
                                        mopMatrix.symm M = (MulOpposite.unop M).transpose.map MulOpposite.op
                                        @[simp]
                                        theorem RingEquiv.mopMatrix_apply {m : Type u_2} {α : Type v} [Fintype m] [NonAssocSemiring α] (M : Matrix m m αᵐᵒᵖ) :
                                        mopMatrix M = MulOpposite.op (M.transpose.map MulOpposite.unop)
                                        def AlgHom.mapMatrix {m : Type u_2} {R : Type u_7} {α : Type v} {β : Type w} [Fintype m] [DecidableEq m] [CommSemiring R] [Semiring α] [Semiring β] [Algebra R α] [Algebra R β] (f : α →ₐ[R] β) :
                                        Matrix m m α →ₐ[R] Matrix m m β

                                        The AlgHom between spaces of square matrices induced by an AlgHom between their coefficients. This is Matrix.map as an AlgHom.

                                        Equations
                                        • f.mapMatrix = { toFun := fun (M : Matrix m m α) => M.map f, map_one' := , map_mul' := , map_zero' := , map_add' := , commutes' := }
                                        Instances For
                                          @[simp]
                                          theorem AlgHom.mapMatrix_apply {m : Type u_2} {R : Type u_7} {α : Type v} {β : Type w} [Fintype m] [DecidableEq m] [CommSemiring R] [Semiring α] [Semiring β] [Algebra R α] [Algebra R β] (f : α →ₐ[R] β) (M : Matrix m m α) :
                                          f.mapMatrix M = M.map f
                                          @[simp]
                                          theorem AlgHom.mapMatrix_id {m : Type u_2} {R : Type u_7} {α : Type v} [Fintype m] [DecidableEq m] [CommSemiring R] [Semiring α] [Algebra R α] :
                                          (AlgHom.id R α).mapMatrix = AlgHom.id R (Matrix m m α)
                                          @[simp]
                                          theorem AlgHom.mapMatrix_comp {m : Type u_2} {R : Type u_7} {α : Type v} {β : Type w} {γ : Type u_9} [Fintype m] [DecidableEq m] [CommSemiring R] [Semiring α] [Semiring β] [Semiring γ] [Algebra R α] [Algebra R β] [Algebra R γ] (f : β →ₐ[R] γ) (g : α →ₐ[R] β) :
                                          f.mapMatrix.comp g.mapMatrix = (f.comp g).mapMatrix
                                          def AlgEquiv.mapMatrix {m : Type u_2} {R : Type u_7} {α : Type v} {β : Type w} [Fintype m] [DecidableEq m] [CommSemiring R] [Semiring α] [Semiring β] [Algebra R α] [Algebra R β] (f : α ≃ₐ[R] β) :
                                          Matrix m m α ≃ₐ[R] Matrix m m β

                                          The AlgEquiv between spaces of square matrices induced by an AlgEquiv between their coefficients. This is Matrix.map as an AlgEquiv.

                                          Equations
                                          • f.mapMatrix = { toFun := fun (M : Matrix m m α) => M.map f, invFun := fun (M : Matrix m m β) => M.map f.symm, left_inv := , right_inv := , map_mul' := , map_add' := , commutes' := }
                                          Instances For
                                            @[simp]
                                            theorem AlgEquiv.mapMatrix_apply {m : Type u_2} {R : Type u_7} {α : Type v} {β : Type w} [Fintype m] [DecidableEq m] [CommSemiring R] [Semiring α] [Semiring β] [Algebra R α] [Algebra R β] (f : α ≃ₐ[R] β) (M : Matrix m m α) :
                                            f.mapMatrix M = M.map f
                                            @[simp]
                                            theorem AlgEquiv.mapMatrix_refl {m : Type u_2} {R : Type u_7} {α : Type v} [Fintype m] [DecidableEq m] [CommSemiring R] [Semiring α] [Algebra R α] :
                                            refl.mapMatrix = refl
                                            @[simp]
                                            theorem AlgEquiv.mapMatrix_symm {m : Type u_2} {R : Type u_7} {α : Type v} {β : Type w} [Fintype m] [DecidableEq m] [CommSemiring R] [Semiring α] [Semiring β] [Algebra R α] [Algebra R β] (f : α ≃ₐ[R] β) :
                                            f.mapMatrix.symm = f.symm.mapMatrix
                                            @[simp]
                                            theorem AlgEquiv.mapMatrix_trans {m : Type u_2} {R : Type u_7} {α : Type v} {β : Type w} {γ : Type u_9} [Fintype m] [DecidableEq m] [CommSemiring R] [Semiring α] [Semiring β] [Semiring γ] [Algebra R α] [Algebra R β] [Algebra R γ] (f : α ≃ₐ[R] β) (g : β ≃ₐ[R] γ) :
                                            f.mapMatrix.trans g.mapMatrix = (f.trans g).mapMatrix
                                            def Matrix.transposeAddEquiv (m : Type u_2) (n : Type u_3) (α : Type v) [Add α] :
                                            Matrix m n α ≃+ Matrix n m α

                                            Matrix.transpose as an AddEquiv

                                            Equations
                                            Instances For
                                              @[simp]
                                              theorem Matrix.transposeAddEquiv_apply (m : Type u_2) (n : Type u_3) (α : Type v) [Add α] (M : Matrix m n α) :
                                              (transposeAddEquiv m n α) M = M.transpose
                                              @[simp]
                                              theorem Matrix.transposeAddEquiv_symm (m : Type u_2) (n : Type u_3) (α : Type v) [Add α] :
                                              theorem Matrix.transpose_list_sum {m : Type u_2} {n : Type u_3} {α : Type v} [AddMonoid α] (l : List (Matrix m n α)) :
                                              l.sum.transpose = (List.map transpose l).sum
                                              theorem Matrix.transpose_multiset_sum {m : Type u_2} {n : Type u_3} {α : Type v} [AddCommMonoid α] (s : Multiset (Matrix m n α)) :
                                              s.sum.transpose = (Multiset.map transpose s).sum
                                              theorem Matrix.transpose_sum {m : Type u_2} {n : Type u_3} {α : Type v} [AddCommMonoid α] {ι : Type u_10} (s : Finset ι) (M : ιMatrix m n α) :
                                              (∑ is, M i).transpose = is, (M i).transpose
                                              def Matrix.transposeLinearEquiv (m : Type u_2) (n : Type u_3) (R : Type u_7) (α : Type v) [Semiring R] [AddCommMonoid α] [Module R α] :
                                              Matrix m n α ≃ₗ[R] Matrix n m α

                                              Matrix.transpose as a LinearMap

                                              Equations
                                              • One or more equations did not get rendered due to their size.
                                              Instances For
                                                @[simp]
                                                theorem Matrix.transposeLinearEquiv_apply (m : Type u_2) (n : Type u_3) (R : Type u_7) (α : Type v) [Semiring R] [AddCommMonoid α] [Module R α] (a✝ : Matrix m n α) :
                                                (transposeLinearEquiv m n R α) a✝ = (transposeAddEquiv m n α).toFun a✝
                                                @[simp]
                                                theorem Matrix.transposeLinearEquiv_symm (m : Type u_2) (n : Type u_3) (R : Type u_7) (α : Type v) [Semiring R] [AddCommMonoid α] [Module R α] :
                                                def Matrix.transposeRingEquiv (m : Type u_2) (α : Type v) [AddCommMonoid α] [CommSemigroup α] [Fintype m] :
                                                Matrix m m α ≃+* (Matrix m m α)ᵐᵒᵖ

                                                Matrix.transpose as a RingEquiv to the opposite ring

                                                Equations
                                                • One or more equations did not get rendered due to their size.
                                                Instances For
                                                  @[simp]
                                                  theorem Matrix.transposeRingEquiv_symm_apply (m : Type u_2) (α : Type v) [AddCommMonoid α] [CommSemigroup α] [Fintype m] (M : (Matrix m m α)ᵐᵒᵖ) :
                                                  (transposeRingEquiv m α).symm M = (MulOpposite.unop M).transpose
                                                  @[simp]
                                                  theorem Matrix.transposeRingEquiv_apply (m : Type u_2) (α : Type v) [AddCommMonoid α] [CommSemigroup α] [Fintype m] (M : Matrix m m α) :
                                                  (transposeRingEquiv m α) M = MulOpposite.op M.transpose
                                                  @[simp]
                                                  theorem Matrix.transpose_pow {m : Type u_2} {α : Type v} [CommSemiring α] [Fintype m] [DecidableEq m] (M : Matrix m m α) (k : ) :
                                                  (M ^ k).transpose = M.transpose ^ k
                                                  theorem Matrix.transpose_list_prod {m : Type u_2} {α : Type v} [CommSemiring α] [Fintype m] [DecidableEq m] (l : List (Matrix m m α)) :
                                                  l.prod.transpose = (List.map transpose l).reverse.prod
                                                  def Matrix.transposeAlgEquiv (m : Type u_2) (R : Type u_7) (α : Type v) [CommSemiring R] [CommSemiring α] [Fintype m] [DecidableEq m] [Algebra R α] :

                                                  Matrix.transpose as an AlgEquiv to the opposite ring

                                                  Equations
                                                  • One or more equations did not get rendered due to their size.
                                                  Instances For
                                                    @[simp]
                                                    theorem Matrix.transposeAlgEquiv_apply (m : Type u_2) (R : Type u_7) (α : Type v) [CommSemiring R] [CommSemiring α] [Fintype m] [DecidableEq m] [Algebra R α] (M : Matrix m m α) :
                                                    (transposeAlgEquiv m R α) M = MulOpposite.op M.transpose
                                                    @[simp]
                                                    theorem Matrix.transposeAlgEquiv_symm_apply (m : Type u_2) (R : Type u_7) (α : Type v) [CommSemiring R] [CommSemiring α] [Fintype m] [DecidableEq m] [Algebra R α] (a✝ : (Matrix m m α)ᵐᵒᵖ) :
                                                    (transposeAlgEquiv m R α).symm a✝ = ((transposeAddEquiv m m α).trans MulOpposite.opAddEquiv).invFun a✝