Documentation

Mathlib.Data.Set.Accumulate

Accumulate #

The function Accumulate takes a set s and returns ⋃ y ≤ x, s y.

def Set.Accumulate {α : Type u_1} {β : Type u_2} [LE α] (s : αSet β) (x : α) :
Set β

Accumulate s is the union of s y for y ≤ x.

Equations
Instances For
    theorem Set.accumulate_def {α : Type u_1} {β : Type u_2} {s : αSet β} [LE α] {x : α} :
    Eq (Accumulate s x) (iUnion fun (y : α) => iUnion fun (h : LE.le y x) => s y)
    theorem Set.mem_accumulate {α : Type u_1} {β : Type u_2} {s : αSet β} [LE α] {x : α} {z : β} :
    Iff (Membership.mem (Accumulate s x) z) (Exists fun (y : α) => And (LE.le y x) (Membership.mem (s y) z))
    theorem Set.subset_accumulate {α : Type u_1} {β : Type u_2} {s : αSet β} [Preorder α] {x : α} :
    theorem Set.accumulate_subset_iUnion {α : Type u_1} {β : Type u_2} {s : αSet β} [LE α] (x : α) :
    HasSubset.Subset (Accumulate s x) (iUnion fun (i : α) => s i)
    theorem Set.monotone_accumulate {α : Type u_1} {β : Type u_2} {s : αSet β} [Preorder α] :
    theorem Set.accumulate_subset_accumulate {α : Type u_1} {β : Type u_2} {s : αSet β} [Preorder α] {x y : α} (h : LE.le x y) :
    theorem Set.biUnion_accumulate {α : Type u_1} {β : Type u_2} {s : αSet β} [Preorder α] (x : α) :
    Eq (iUnion fun (y : α) => iUnion fun (h : LE.le y x) => Accumulate s y) (iUnion fun (y : α) => iUnion fun (h : LE.le y x) => s y)
    theorem Set.iUnion_accumulate {α : Type u_1} {β : Type u_2} {s : αSet β} [Preorder α] :
    Eq (iUnion fun (x : α) => Accumulate s x) (iUnion fun (x : α) => s x)
    theorem Set.accumulate_bot {α : Type u_1} {β : Type u_2} [PartialOrder α] [OrderBot α] (s : αSet β) :
    theorem Set.accumulate_zero_nat {β : Type u_2} (s : NatSet β) :
    Eq (Accumulate s 0) (s 0)
    theorem Set.disjoint_accumulate {α : Type u_1} {β : Type u_2} {s : αSet β} [Preorder α] (hs : Pairwise (Function.onFun Disjoint s)) {i j : α} (hij : LT.lt i j) :
    Disjoint (Accumulate s i) (s j)