Documentation

Mathlib.LinearAlgebra.RootSystem.GeckConstruction.Semisimple

Geck's construction of a Lie algebra associated to a root system yields semisimple algebras #

This file contains a proof that RootPairing.GeckConstruction.lieAlgebra yields semisimple Lie algebras.

Main definitions: #

theorem RootPairing.GeckConstruction.isNilpotent_e {ι : Type u_1} {R : Type u_2} {M : Type u_3} {N : Type u_4} [CommRing R] [IsDomain R] [CharZero R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] {P : RootPairing ι R M N} [P.IsCrystallographic] [P.IsReduced] {b : P.Base} [Fintype ι] [DecidableEq ι] (i : { x : ι // x b.support }) :
theorem RootPairing.GeckConstruction.isNilpotent_f {ι : Type u_1} {R : Type u_2} {M : Type u_3} {N : Type u_4} [CommRing R] [IsDomain R] [CharZero R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] {P : RootPairing ι R M N} [P.IsCrystallographic] [P.IsReduced] {b : P.Base} [Fintype ι] [DecidableEq ι] (i : { x : ι // x b.support }) :
@[simp]
theorem RootPairing.GeckConstruction.trace_h_eq_zero {ι : Type u_1} {R : Type u_2} {M : Type u_3} {N : Type u_4} [CommRing R] [CharZero R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] {P : RootPairing ι R M N} [P.IsCrystallographic] {b : P.Base} [Fintype ι] [DecidableEq ι] (i : { x : ι // x b.support }) :
(h i).trace = 0
theorem RootPairing.GeckConstruction.trace_toEnd_eq_zero {ι : Type u_1} {R : Type u_2} {M : Type u_3} {N : Type u_4} [CommRing R] [IsDomain R] [CharZero R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] {P : RootPairing ι R M N} [P.IsCrystallographic] [P.IsReduced] {b : P.Base} [Fintype ι] [DecidableEq ι] (x : (lieAlgebra b)) :
(LinearMap.trace R ({ x : ι // x b.support } ιR)) ((LieModule.toEnd R (↥(lieAlgebra b)) ({ x : ι // x b.support } ιR)) x) = 0

This is the main result of lemma 4.1 from Geck.