Documentation

Mathlib.MeasureTheory.MeasurableSpace.MeasurablyGenerated

Measurably generated filters #

We say that a filter f is measurably generated if every set s ∈ f includes a measurable set t ∈ f. This property is useful, e.g., to extract a measurable witness of Filter.Eventually.

@[simp]
theorem MeasurableSpace.generateFrom_singleton {α : Type u_1} (s : Set α) :
generateFrom {s} = MeasurableSpace.comap (fun (x : α) => x s)

The sigma-algebra generated by a single set s is {∅, s, sᶜ, univ}.

A filter f is measurably generates if each s ∈ f includes a measurable t ∈ f.

Instances
    theorem Filter.Eventually.exists_measurable_mem {α : Type u_1} [MeasurableSpace α] {f : Filter α} [f.IsMeasurablyGenerated] {p : αProp} (h : ∀ᶠ (x : α) in f, p x) :
    sf, MeasurableSet s xs, p x
    theorem Filter.Eventually.exists_measurable_mem_of_smallSets {α : Type u_1} [MeasurableSpace α] {f : Filter α} [f.IsMeasurablyGenerated] {p : Set αProp} (h : ∀ᶠ (s : Set α) in f.smallSets, p s) :
    sf, MeasurableSet s p s
    instance Filter.iInf_isMeasurablyGenerated {α : Type u_1} {ι : Sort uι} [MeasurableSpace α] {f : ιFilter α} [∀ (i : ι), (f i).IsMeasurablyGenerated] :
    (⨅ (i : ι), f i).IsMeasurablyGenerated
    theorem measurableSet_tendsto {β : Type u_2} {γ : Type u_3} {δ : Type u_4} {x✝ : MeasurableSpace β} [MeasurableSpace γ] [Countable δ] {l : Filter δ} [l.IsCountablyGenerated] (l' : Filter γ) [l'.IsCountablyGenerated] [hl' : l'.IsMeasurablyGenerated] {f : δβγ} (hf : ∀ (i : δ), Measurable (f i)) :
    MeasurableSet {x : β | Filter.Tendsto (fun (n : δ) => f n x) l l'}

    The set of points for which a sequence of measurable functions converges to a given value is measurable.

    theorem MeasurableSet.iUnion_of_monotone_of_frequently {α : Type u_1} [MeasurableSpace α] {ι : Type u_5} [Preorder ι] [Filter.atTop.IsCountablyGenerated] {s : ιSet α} (hsm : Monotone s) (hs : ∃ᶠ (i : ι) in Filter.atTop, MeasurableSet (s i)) :
    MeasurableSet (⋃ (i : ι), s i)
    theorem MeasurableSet.iInter_of_antitone_of_frequently {α : Type u_1} [MeasurableSpace α] {ι : Type u_5} [Preorder ι] [Filter.atTop.IsCountablyGenerated] {s : ιSet α} (hsm : Antitone s) (hs : ∃ᶠ (i : ι) in Filter.atTop, MeasurableSet (s i)) :
    MeasurableSet (⋂ (i : ι), s i)
    theorem MeasurableSet.iUnion_of_monotone {α : Type u_1} [MeasurableSpace α] {ι : Type u_5} [Preorder ι] [IsDirected ι fun (x1 x2 : ι) => x1 x2] [Filter.atTop.IsCountablyGenerated] {s : ιSet α} (hsm : Monotone s) (hs : ∀ (i : ι), MeasurableSet (s i)) :
    MeasurableSet (⋃ (i : ι), s i)
    theorem MeasurableSet.iInter_of_antitone {α : Type u_1} [MeasurableSpace α] {ι : Type u_5} [Preorder ι] [IsDirected ι fun (x1 x2 : ι) => x1 x2] [Filter.atTop.IsCountablyGenerated] {s : ιSet α} (hsm : Antitone s) (hs : ∀ (i : ι), MeasurableSet (s i)) :
    MeasurableSet (⋂ (i : ι), s i)

    Typeclasses on Subtype MeasurableSet #

    @[simp]
    theorem MeasurableSet.mem_coe {α : Type u_1} [MeasurableSpace α] (a : α) (s : Subtype MeasurableSet) :
    a s a s
    @[simp]
    theorem MeasurableSet.coe_empty {α : Type u_1} [MeasurableSpace α] :
    =
    @[simp]
    theorem MeasurableSet.coe_insert {α : Type u_1} [MeasurableSpace α] [MeasurableSingletonClass α] (a : α) (s : Subtype MeasurableSet) :
    (insert a s) = insert a s
    @[simp]
    theorem MeasurableSet.coe_singleton {α : Type u_1} [MeasurableSpace α] [MeasurableSingletonClass α] (a : α) :
    {a} = {a}
    @[simp]
    theorem MeasurableSet.coe_compl {α : Type u_1} [MeasurableSpace α] (s : Subtype MeasurableSet) :
    s = (↑s)
    Equations
    @[simp]
    theorem MeasurableSet.coe_union {α : Type u_1} [MeasurableSpace α] (s t : Subtype MeasurableSet) :
    ↑(s t) = s t
    @[simp]
    theorem MeasurableSet.sup_eq_union {α : Type u_1} [MeasurableSpace α] (s t : { s : Set α // MeasurableSet s }) :
    s t = s t
    Equations
    @[simp]
    theorem MeasurableSet.coe_inter {α : Type u_1} [MeasurableSpace α] (s t : Subtype MeasurableSet) :
    ↑(s t) = s t
    @[simp]
    theorem MeasurableSet.inf_eq_inter {α : Type u_1} [MeasurableSpace α] (s t : { s : Set α // MeasurableSet s }) :
    s t = s t
    Equations
    Equations
    @[simp]
    theorem MeasurableSet.coe_sdiff {α : Type u_1} [MeasurableSpace α] (s t : Subtype MeasurableSet) :
    ↑(s \ t) = s \ t
    @[simp]
    theorem MeasurableSet.coe_himp {α : Type u_1} [MeasurableSpace α] (s t : Subtype MeasurableSet) :
    ↑(s t) = s t
    @[simp]
    theorem MeasurableSet.coe_bot {α : Type u_1} [MeasurableSpace α] :
    =
    @[simp]
    theorem MeasurableSet.coe_top {α : Type u_1} [MeasurableSpace α] :
    =
    theorem MeasurableSet.measurableSet_blimsup {α : Type u_1} [MeasurableSpace α] {s : Set α} {p : Prop} (h : ∀ (n : ), p nMeasurableSet (s n)) :
    theorem MeasurableSet.measurableSet_bliminf {α : Type u_1} [MeasurableSpace α] {s : Set α} {p : Prop} (h : ∀ (n : ), p nMeasurableSet (s n)) :