Measurably generated filters #
We say that a filter f
is measurably generated if every set s ∈ f
includes a measurable
set t ∈ f
. This property is useful, e.g., to extract a measurable witness of Filter.Eventually
.
@[simp]
The sigma-algebra generated by a single set s
is {∅, s, sᶜ, univ}
.
theorem
MeasurableSpace.generateFrom_singleton_le
{α : Type u_1}
{m : MeasurableSpace α}
{s : Set α}
(hs : MeasurableSet s)
:
A filter f
is measurably generates if each s ∈ f
includes a measurable t ∈ f
.
- exists_measurable_subset ⦃s : Set α⦄ : s ∈ f → ∃ t ∈ f, MeasurableSet t ∧ t ⊆ s
Instances
theorem
Filter.Eventually.exists_measurable_mem
{α : Type u_1}
[MeasurableSpace α]
{f : Filter α}
[f.IsMeasurablyGenerated]
{p : α → Prop}
(h : ∀ᶠ (x : α) in f, p x)
:
∃ s ∈ f, MeasurableSet s ∧ ∀ x ∈ s, p x
theorem
Filter.Eventually.exists_measurable_mem_of_smallSets
{α : Type u_1}
[MeasurableSpace α]
{f : Filter α}
[f.IsMeasurablyGenerated]
{p : Set α → Prop}
(h : ∀ᶠ (s : Set α) in f.smallSets, p s)
:
∃ s ∈ f, MeasurableSet s ∧ p s
instance
Filter.inf_isMeasurablyGenerated
{α : Type u_1}
[MeasurableSpace α]
(f g : Filter α)
[f.IsMeasurablyGenerated]
[g.IsMeasurablyGenerated]
:
(f ⊓ g).IsMeasurablyGenerated
theorem
MeasurableSet.principal_isMeasurablyGenerated
{α : Type u_1}
[MeasurableSpace α]
{s : Set α}
:
Alias of the reverse direction of Filter.principal_isMeasurablyGenerated_iff
.
instance
Filter.iInf_isMeasurablyGenerated
{α : Type u_1}
{ι : Sort uι}
[MeasurableSpace α]
{f : ι → Filter α}
[∀ (i : ι), (f i).IsMeasurablyGenerated]
:
(⨅ (i : ι), f i).IsMeasurablyGenerated
theorem
measurableSet_tendsto
{β : Type u_2}
{γ : Type u_3}
{δ : Type u_4}
{x✝ : MeasurableSpace β}
[MeasurableSpace γ]
[Countable δ]
{l : Filter δ}
[l.IsCountablyGenerated]
(l' : Filter γ)
[l'.IsCountablyGenerated]
[hl' : l'.IsMeasurablyGenerated]
{f : δ → β → γ}
(hf : ∀ (i : δ), Measurable (f i))
:
MeasurableSet {x : β | Filter.Tendsto (fun (n : δ) => f n x) l l'}
The set of points for which a sequence of measurable functions converges to a given value is measurable.
theorem
MeasurableSet.iUnion_of_monotone_of_frequently
{α : Type u_1}
[MeasurableSpace α]
{ι : Type u_5}
[Preorder ι]
[Filter.atTop.IsCountablyGenerated]
{s : ι → Set α}
(hsm : Monotone s)
(hs : ∃ᶠ (i : ι) in Filter.atTop, MeasurableSet (s i))
:
MeasurableSet (⋃ (i : ι), s i)
theorem
MeasurableSet.iInter_of_antitone_of_frequently
{α : Type u_1}
[MeasurableSpace α]
{ι : Type u_5}
[Preorder ι]
[Filter.atTop.IsCountablyGenerated]
{s : ι → Set α}
(hsm : Antitone s)
(hs : ∃ᶠ (i : ι) in Filter.atTop, MeasurableSet (s i))
:
MeasurableSet (⋂ (i : ι), s i)
theorem
MeasurableSet.iUnion_of_monotone
{α : Type u_1}
[MeasurableSpace α]
{ι : Type u_5}
[Preorder ι]
[IsDirected ι fun (x1 x2 : ι) => x1 ≤ x2]
[Filter.atTop.IsCountablyGenerated]
{s : ι → Set α}
(hsm : Monotone s)
(hs : ∀ (i : ι), MeasurableSet (s i))
:
MeasurableSet (⋃ (i : ι), s i)
theorem
MeasurableSet.iInter_of_antitone
{α : Type u_1}
[MeasurableSpace α]
{ι : Type u_5}
[Preorder ι]
[IsDirected ι fun (x1 x2 : ι) => x1 ≤ x2]
[Filter.atTop.IsCountablyGenerated]
{s : ι → Set α}
(hsm : Antitone s)
(hs : ∀ (i : ι), MeasurableSet (s i))
:
MeasurableSet (⋂ (i : ι), s i)
Typeclasses on Subtype MeasurableSet
#
Equations
- MeasurableSet.Subtype.instMembership = { mem := fun (s : Subtype MeasurableSet) (a : α) => a ∈ ↑s }
@[simp]
theorem
MeasurableSet.mem_coe
{α : Type u_1}
[MeasurableSpace α]
(a : α)
(s : Subtype MeasurableSet)
:
Equations
- MeasurableSet.Subtype.instEmptyCollection = { emptyCollection := ⟨∅, ⋯⟩ }
instance
MeasurableSet.Subtype.instInsert
{α : Type u_1}
[MeasurableSpace α]
[MeasurableSingletonClass α]
:
Equations
- MeasurableSet.Subtype.instInsert = { insert := fun (a : α) (s : Subtype MeasurableSet) => ⟨insert a ↑s, ⋯⟩ }
@[simp]
theorem
MeasurableSet.coe_insert
{α : Type u_1}
[MeasurableSpace α]
[MeasurableSingletonClass α]
(a : α)
(s : Subtype MeasurableSet)
:
instance
MeasurableSet.Subtype.instSingleton
{α : Type u_1}
[MeasurableSpace α]
[MeasurableSingletonClass α]
:
Equations
- MeasurableSet.Subtype.instSingleton = { singleton := fun (a : α) => ⟨{a}, ⋯⟩ }
@[simp]
theorem
MeasurableSet.coe_singleton
{α : Type u_1}
[MeasurableSpace α]
[MeasurableSingletonClass α]
(a : α)
:
instance
MeasurableSet.Subtype.instLawfulSingleton
{α : Type u_1}
[MeasurableSpace α]
[MeasurableSingletonClass α]
:
Equations
- MeasurableSet.Subtype.instHasCompl = { compl := fun (x : Subtype MeasurableSet) => ⟨(↑x)ᶜ, ⋯⟩ }
@[simp]
Equations
- MeasurableSet.Subtype.instUnion = { union := fun (x y : Subtype MeasurableSet) => ⟨↑x ∪ ↑y, ⋯⟩ }
@[simp]
Equations
- MeasurableSet.Subtype.instSup = { max := fun (x y : Subtype MeasurableSet) => x ∪ y }
@[simp]
theorem
MeasurableSet.sup_eq_union
{α : Type u_1}
[MeasurableSpace α]
(s t : { s : Set α // MeasurableSet s })
:
Equations
- MeasurableSet.Subtype.instInter = { inter := fun (x y : Subtype MeasurableSet) => ⟨↑x ∩ ↑y, ⋯⟩ }
@[simp]
Equations
- MeasurableSet.Subtype.instInf = { min := fun (x y : Subtype MeasurableSet) => x ∩ y }
@[simp]
theorem
MeasurableSet.inf_eq_inter
{α : Type u_1}
[MeasurableSpace α]
(s t : { s : Set α // MeasurableSet s })
:
Equations
- MeasurableSet.Subtype.instSDiff = { sdiff := fun (x y : Subtype MeasurableSet) => ⟨↑x \ ↑y, ⋯⟩ }
Equations
- MeasurableSet.Subtype.instHImp = { himp := fun (x y : Subtype MeasurableSet) => ⟨↑x ⇨ ↑y, ⋯⟩ }
@[simp]
@[simp]
Equations
- MeasurableSet.Subtype.instBot = { bot := ∅ }
Equations
- MeasurableSet.Subtype.instTop = { top := ⟨Set.univ, ⋯⟩ }
noncomputable instance
MeasurableSet.Subtype.instBooleanAlgebra
{α : Type u_1}
[MeasurableSpace α]
:
Equations
- MeasurableSet.Subtype.instBooleanAlgebra = Function.Injective.booleanAlgebra (fun (a : Subtype MeasurableSet) => ↑a) ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
theorem
MeasurableSet.measurableSet_blimsup
{α : Type u_1}
[MeasurableSpace α]
{s : ℕ → Set α}
{p : ℕ → Prop}
(h : ∀ (n : ℕ), p n → MeasurableSet (s n))
:
theorem
MeasurableSet.measurableSet_bliminf
{α : Type u_1}
[MeasurableSpace α]
{s : ℕ → Set α}
{p : ℕ → Prop}
(h : ∀ (n : ℕ), p n → MeasurableSet (s n))
:
theorem
MeasurableSet.measurableSet_limsup
{α : Type u_1}
[MeasurableSpace α]
{s : ℕ → Set α}
(hs : ∀ (n : ℕ), MeasurableSet (s n))
:
theorem
MeasurableSet.measurableSet_liminf
{α : Type u_1}
[MeasurableSpace α]
{s : ℕ → Set α}
(hs : ∀ (n : ℕ), MeasurableSet (s n))
: