Additive Contents #
An additive content m
on a set of sets C
is a set function with value 0 at the empty set which
is finitely additive on C
. That means that for any finset I
of pairwise disjoint sets in C
such that ⋃₀ I ∈ C
, m (⋃₀ I) = ∑ s ∈ I, m s
.
Mathlib also has a definition of contents over compact sets: see MeasureTheory.Content
.
A Content
is in particular an AddContent
on the set of compact sets.
Main definitions #
MeasureTheory.AddContent C
: additive contents over the set of setsC
.
Main statements #
Let m
be an AddContent C
. If C
is a set semi-ring (IsSetSemiring C
) we have the properties
MeasureTheory.sum_addContent_le_of_subset
: ifI
is a finset of pairwise disjoint sets inC
and⋃₀ I ⊆ t
fort ∈ C
, then∑ s ∈ I, m s ≤ m t
.MeasureTheory.addContent_mono
: ifs ⊆ t
for two sets inC
, thenm s ≤ m t
.MeasureTheory.addContent_union'
: ifs, t ∈ C
are disjoint ands ∪ t ∈ C
, thenm (s ∪ t) = m s + m t
. IfC
is a set ring (IsSetRing
), thenaddContent_union
gives the same conclusion without the hypothesiss ∪ t ∈ C
(since it is a consequence ofIsSetRing C
).
If C
is a set ring (MeasureTheory.IsSetRing C
), we have, for s, t ∈ C
,
MeasureTheory.addContent_union_le
:m (s ∪ t) ≤ m s + m t
MeasureTheory.addContent_le_diff
:m s - m t ≤ m (s \ t)
An additive content is a set function with value 0 at the empty set which is finitely additive on a given set of sets.
The value of the content on a set.
Instances For
Equations
- MeasureTheory.instInhabitedAddContent = { default := { toFun := fun (x : Set α) => 0, empty' := MeasureTheory.instInhabitedAddContent.proof_1, sUnion' := ⋯ } }
instance
MeasureTheory.instDFunLikeAddContentSetENNReal
{α : Type u_1}
{C : Set (Set α)}
:
DFunLike (MeasureTheory.AddContent C) (Set α) fun (x : Set α) => ENNReal
Equations
- MeasureTheory.instDFunLikeAddContentSetENNReal = { coe := fun (m : MeasureTheory.AddContent C) (s : Set α) => m.toFun s, coe_injective' := ⋯ }
theorem
MeasureTheory.AddContent.ext
{α : Type u_1}
{C : Set (Set α)}
{m m' : MeasureTheory.AddContent C}
(h : ∀ (s : Set α), m s = m' s)
:
m = m'
@[simp]
theorem
MeasureTheory.addContent_empty
{α : Type u_1}
{C : Set (Set α)}
{m : MeasureTheory.AddContent C}
:
theorem
MeasureTheory.addContent_eq_add_diffFinset₀_of_subset
{α : Type u_1}
{C : Set (Set α)}
{s : Set α}
{I : Finset (Set α)}
{m : MeasureTheory.AddContent C}
(hC : MeasureTheory.IsSetSemiring C)
(hs : s ∈ C)
(hI : ↑I ⊆ C)
(hI_ss : ∀ t ∈ I, t ⊆ s)
(h_dis : (↑I).PairwiseDisjoint id)
:
theorem
MeasureTheory.sum_addContent_le_of_subset
{α : Type u_1}
{C : Set (Set α)}
{t : Set α}
{I : Finset (Set α)}
{m : MeasureTheory.AddContent C}
(hC : MeasureTheory.IsSetSemiring C)
(h_ss : ↑I ⊆ C)
(h_dis : (↑I).PairwiseDisjoint id)
(ht : t ∈ C)
(hJt : ∀ s ∈ I, s ⊆ t)
:
∑ u ∈ I, m u ≤ m t
theorem
MeasureTheory.addContent_mono
{α : Type u_1}
{C : Set (Set α)}
{s t : Set α}
{m : MeasureTheory.AddContent C}
(hC : MeasureTheory.IsSetSemiring C)
(hs : s ∈ C)
(ht : t ∈ C)
(hst : s ⊆ t)
:
m s ≤ m t
theorem
MeasureTheory.addContent_union
{α : Type u_1}
{C : Set (Set α)}
{s t : Set α}
{m : MeasureTheory.AddContent C}
(hC : MeasureTheory.IsSetRing C)
(hs : s ∈ C)
(ht : t ∈ C)
(h_dis : Disjoint s t)
:
theorem
MeasureTheory.addContent_union_le
{α : Type u_1}
{C : Set (Set α)}
{s t : Set α}
{m : MeasureTheory.AddContent C}
(hC : MeasureTheory.IsSetRing C)
(hs : s ∈ C)
(ht : t ∈ C)
:
theorem
MeasureTheory.addContent_biUnion_le
{α : Type u_1}
{C : Set (Set α)}
{m : MeasureTheory.AddContent C}
{ι : Type u_2}
(hC : MeasureTheory.IsSetRing C)
{s : ι → Set α}
{S : Finset ι}
(hs : ∀ n ∈ S, s n ∈ C)
:
m (⋃ i ∈ S, s i) ≤ ∑ i ∈ S, m (s i)
theorem
MeasureTheory.le_addContent_diff
{α : Type u_1}
{C : Set (Set α)}
{s t : Set α}
(m : MeasureTheory.AddContent C)
(hC : MeasureTheory.IsSetRing C)
(hs : s ∈ C)
(ht : t ∈ C)
: