Documentation

Mathlib.MeasureTheory.Measure.AddContent

Additive Contents #

An additive content m on a set of sets C is a set function with value 0 at the empty set which is finitely additive on C. That means that for any finset I of pairwise disjoint sets in C such that ⋃₀ I ∈ C, m (⋃₀ I) = ∑ s ∈ I, m s.

Mathlib also has a definition of contents over compact sets: see MeasureTheory.Content. A Content is in particular an AddContent on the set of compact sets.

Main definitions #

Main statements #

Let m be an AddContent C. If C is a set semi-ring (IsSetSemiring C) we have the properties

If C is a set ring (MeasureTheory.IsSetRing C), we have

structure MeasureTheory.AddContent {α : Type u_1} (C : Set (Set α)) :
Type u_1

An additive content is a set function with value 0 at the empty set which is finitely additive on a given set of sets.

Instances For
    Equations
    instance MeasureTheory.instDFunLikeAddContentSetENNReal {α : Type u_1} {C : Set (Set α)} :
    DFunLike (AddContent C) (Set α) fun (x : Set α) => ENNReal
    Equations
    theorem MeasureTheory.AddContent.ext {α : Type u_1} {C : Set (Set α)} {m m' : AddContent C} (h : ∀ (s : Set α), m s = m' s) :
    m = m'
    @[simp]
    theorem MeasureTheory.addContent_empty {α : Type u_1} {C : Set (Set α)} {m : AddContent C} :
    m = 0
    theorem MeasureTheory.addContent_sUnion {α : Type u_1} {C : Set (Set α)} {I : Finset (Set α)} {m : AddContent C} (h_ss : I C) (h_dis : (↑I).PairwiseDisjoint id) (h_mem : ⋃₀ I C) :
    m (⋃₀ I) = uI, m u
    theorem MeasureTheory.addContent_union' {α : Type u_1} {C : Set (Set α)} {s t : Set α} {m : AddContent C} (hs : s C) (ht : t C) (hst : s t C) (h_dis : Disjoint s t) :
    m (s t) = m s + m t

    An additive content is said to be sigma-sub-additive if for any sequence of sets f in C such that ⋃ i, f i ∈ C, we have m (⋃ i, f i) ≤ ∑' i, m (f i).

    Equations
    Instances For
      theorem MeasureTheory.addContent_eq_add_disjointOfDiffUnion_of_subset {α : Type u_1} {C : Set (Set α)} {s : Set α} {I : Finset (Set α)} {m : AddContent C} (hC : IsSetSemiring C) (hs : s C) (hI : I C) (hI_ss : tI, t s) (h_dis : (↑I).PairwiseDisjoint id) :
      m s = iI, m i + ihC.disjointOfDiffUnion hs hI, m i
      theorem MeasureTheory.sum_addContent_le_of_subset {α : Type u_1} {C : Set (Set α)} {t : Set α} {I : Finset (Set α)} {m : AddContent C} (hC : IsSetSemiring C) (h_ss : I C) (h_dis : (↑I).PairwiseDisjoint id) (ht : t C) (hJt : sI, s t) :
      uI, m u m t

      For an m : addContent C on a SetSemiring C, if I is a Finset of pairwise disjoint sets in C and ⋃₀ I ⊆ t for t ∈ C, then ∑ s ∈ I, m s ≤ m t.

      theorem MeasureTheory.addContent_mono {α : Type u_1} {C : Set (Set α)} {s t : Set α} {m : AddContent C} (hC : IsSetSemiring C) (hs : s C) (ht : t C) (hst : s t) :
      m s m t

      An addContent C on a SetSemiring C is monotone.

      theorem MeasureTheory.eq_add_disjointOfDiff_of_subset {α : Type u_1} {C : Set (Set α)} {s t : Set α} {m : AddContent C} (hC : IsSetSemiring C) (hs : s C) (ht : t C) (hst : s t) :
      m t = m s + ihC.disjointOfDiff ht hs, m i

      For an m : addContent C on a SetSemiring C and s t : Set α with s ⊆ t, we can write m t = m s + ∑ i in hC.disjointOfDiff ht hs, m i.

      theorem MeasureTheory.addContent_sUnion_le_sum {α : Type u_1} {C : Set (Set α)} {m : AddContent C} (hC : IsSetSemiring C) (J : Finset (Set α)) (h_ss : J C) (h_mem : ⋃₀ J C) :
      m (⋃₀ J) uJ, m u

      An addContent C on a SetSemiring C is sub-additive.

      theorem MeasureTheory.addContent_le_sum_of_subset_sUnion {α : Type u_1} {C : Set (Set α)} {t : Set α} {m : AddContent C} (hC : IsSetSemiring C) {J : Finset (Set α)} (h_ss : J C) (ht : t C) (htJ : t ⋃₀ J) :
      m t uJ, m u
      theorem MeasureTheory.addContent_iUnion_eq_tsum_of_disjoint_of_addContent_iUnion_le {α : Type u_1} {C : Set (Set α)} {m : AddContent C} (hC : IsSetSemiring C) (m_subadd : ∀ (f : Set α), (∀ (i : ), f i C)⋃ (i : ), f i CPairwise (Function.onFun Disjoint f)m (⋃ (i : ), f i) ∑' (i : ), m (f i)) (f : Set α) (hf : ∀ (i : ), f i C) (hf_Union : ⋃ (i : ), f i C) (hf_disj : Pairwise (Function.onFun Disjoint f)) :
      m (⋃ (i : ), f i) = ∑' (i : ), m (f i)

      If an AddContent is σ-subadditive on a semi-ring of sets, then it is σ-additive.

      theorem MeasureTheory.addContent_iUnion_eq_tsum_of_disjoint_of_IsSigmaSubadditive {α : Type u_1} {C : Set (Set α)} {m : AddContent C} (hC : IsSetSemiring C) (m_subadd : m.IsSigmaSubadditive) (f : Set α) (hf : ∀ (i : ), f i C) (hf_Union : ⋃ (i : ), f i C) (hf_disj : Pairwise (Function.onFun Disjoint f)) :
      m (⋃ (i : ), f i) = ∑' (i : ), m (f i)

      If an AddContent is σ-subadditive on a semi-ring of sets, then it is σ-additive.

      noncomputable def MeasureTheory.AddContent.extend {α : Type u_1} {C : Set (Set α)} (hC : IsSetSemiring C) (m : AddContent C) :

      An additive content obtained from another one on the same semiring of sets by setting the value of each set not in the semiring at .

      Equations
      Instances For
        theorem MeasureTheory.AddContent.extend_eq_extend {α : Type u_1} {C : Set (Set α)} (hC : IsSetSemiring C) (m : AddContent C) :
        (AddContent.extend hC m) = extend fun (x : Set α) (x_1 : x C) => m x
        theorem MeasureTheory.AddContent.extend_eq {α : Type u_1} {C : Set (Set α)} {s : Set α} (hC : IsSetSemiring C) (m : AddContent C) (hs : s C) :
        (AddContent.extend hC m) s = m s
        theorem MeasureTheory.AddContent.extend_eq_top {α : Type u_1} {C : Set (Set α)} {s : Set α} (hC : IsSetSemiring C) (m : AddContent C) (hs : sC) :
        theorem MeasureTheory.addContent_union {α : Type u_1} {C : Set (Set α)} {s t : Set α} {m : AddContent C} (hC : IsSetRing C) (hs : s C) (ht : t C) (h_dis : Disjoint s t) :
        m (s t) = m s + m t
        theorem MeasureTheory.addContent_union_le {α : Type u_1} {C : Set (Set α)} {s t : Set α} {m : AddContent C} (hC : IsSetRing C) (hs : s C) (ht : t C) :
        m (s t) m s + m t
        theorem MeasureTheory.addContent_biUnion_le {α : Type u_1} {C : Set (Set α)} {m : AddContent C} {ι : Type u_2} (hC : IsSetRing C) {s : ιSet α} {S : Finset ι} (hs : nS, s n C) :
        m (⋃ iS, s i) iS, m (s i)
        theorem MeasureTheory.le_addContent_diff {α : Type u_1} {C : Set (Set α)} {s t : Set α} (m : AddContent C) (hC : IsSetRing C) (hs : s C) (ht : t C) :
        m s - m t m (s \ t)
        theorem MeasureTheory.addContent_diff_of_ne_top {α : Type u_1} {C : Set (Set α)} (m : AddContent C) (hC : IsSetRing C) (hm_ne_top : sC, m s ) {s t : Set α} (hs : s C) (ht : t C) (hts : t s) :
        m (s \ t) = m s - m t
        theorem MeasureTheory.addContent_accumulate {α : Type u_1} {C : Set (Set α)} (m : AddContent C) (hC : IsSetRing C) {s : Set α} (hs_disj : Pairwise (Function.onFun Disjoint s)) (hsC : ∀ (i : ), s i C) (n : ) :
        m (Set.Accumulate s n) = iFinset.range (n + 1), m (s i)
        def MeasureTheory.IsSetRing.addContent_of_union {α : Type u_1} {C : Set (Set α)} (m : Set αENNReal) (hC : IsSetRing C) (m_empty : m = 0) (m_add : ∀ {s t : Set α}, s Ct CDisjoint s tm (s t) = m s + m t) :

        A function which is additive on disjoint elements in a ring of sets C defines an additive content on C.

        Equations
        Instances For
          theorem MeasureTheory.addContent_iUnion_eq_sum_of_tendsto_zero {α : Type u_1} {C : Set (Set α)} (hC : IsSetRing C) (m : AddContent C) (hm_ne_top : sC, m s ) (hm_tendsto : ∀ ⦃s : Set α⦄, (∀ (n : ), s n C)Antitone s⋂ (n : ), s n = Filter.Tendsto (fun (n : ) => m (s n)) Filter.atTop (nhds 0)) ⦃f : Set α (hf : ∀ (i : ), f i C) (hUf : ⋃ (i : ), f i C) (h_disj : Pairwise (Function.onFun Disjoint f)) :
          m (⋃ (i : ), f i) = ∑' (i : ), m (f i)

          In a ring of sets, continuity of an additive content at implies σ-additivity. This is not true in general in semirings, or without the hypothesis that m is finite. See the examples 7 and 8 in Halmos' book Measure Theory (1974), page 40.