Documentation

Mathlib.NumberTheory.ModularForms.EisensteinSeries.UniformConvergence

Uniform convergence of Eisenstein series #

We show that the sum of eisSummand converges locally uniformly on to the Eisenstein series of weight k and level Γ(N) with congruence condition a : Fin 2 → ZMod N.

Outline of argument #

The key lemma r_mul_max_le shows that, for z ∈ ℍ and c, d ∈ ℤ (not both zero), |c z + d| is bounded below by r z * max (|c|, |d|), where r z is an explicit function of z (independent of c, d) satisfying 0 < r z < 1 for all z.

We then show in summable_one_div_rpow_max that the sum of max (|c|, |d|) ^ (-k) over (c, d) ∈ ℤ × ℤ is convergent for 2 < k. This is proved by decomposing ℤ × ℤ using the Finset.box lemmas.

Auxiliary function used for bounding Eisenstein series, defined as z.im ^ 2 / (z.re ^ 2 + z.im ^ 2).

Equations
Instances For
    theorem EisensteinSeries.r1_aux_bound (z : UpperHalfPlane) (c : Real) {d : Real} (hd : LE.le 1 (HPow.hPow d 2)) :

    For c, d ∈ ℝ with 1 ≤ d ^ 2, we have r1 z ≤ |c * z + d| ^ 2.

    This function is used to give an upper bound on the summands in Eisenstein series; it is defined by z ↦ min z.im √(z.im ^ 2 / (z.re ^ 2 + z.im ^ 2)).

    Equations
    Instances For
      theorem EisensteinSeries.r_lower_bound_on_verticalStrip (z : UpperHalfPlane) {A B : Real} (h : LT.lt 0 B) (hz : Membership.mem (UpperHalfPlane.verticalStrip A B) z) :
      LE.le (r { re := A, im := B }, h) (r z)
      theorem EisensteinSeries.div_max_sq_ge_one (x : Fin 2Int) (hx : Ne x 0) :
      Or (LE.le 1 (HPow.hPow (HDiv.hDiv (x 0).cast (Norm.norm x)) 2)) (LE.le 1 (HPow.hPow (HDiv.hDiv (x 1).cast (Norm.norm x)) 2))
      theorem EisensteinSeries.r_mul_max_le (z : UpperHalfPlane) {x : Fin 2Int} (hx : Ne x 0) :
      theorem EisensteinSeries.summand_bound (z : UpperHalfPlane) {k : Real} (hk : LE.le 0 k) (x : Fin 2Int) :

      Upper bound for the summand |c * z + d| ^ (-k), as a product of a function of z and a function of c, d.

      theorem EisensteinSeries.summand_bound_of_mem_verticalStrip {z : UpperHalfPlane} {k : Real} (hk : LE.le 0 k) (x : Fin 2Int) {A B : Real} (hB : LT.lt 0 B) (hz : Membership.mem (UpperHalfPlane.verticalStrip A B) z) :
      LE.le (HPow.hPow (Norm.norm (HAdd.hAdd (HMul.hMul (x 0).cast z.coe) (x 1).cast)) (Neg.neg k)) (HMul.hMul (HPow.hPow (r { re := A, im := B }, hB) (Neg.neg k)) (HPow.hPow (Norm.norm x) (Neg.neg k)))
      theorem EisensteinSeries.summable_one_div_norm_rpow {k : Real} (hk : LT.lt 2 k) :
      Summable fun (x : Fin 2Int) => HPow.hPow (Norm.norm x) (Neg.neg k)

      The function ℤ ^ 2 → ℝ given by x ↦ ‖x‖ ^ (-k) is summable if 2 < k. We prove this by splitting into boxes using Finset.box.

      theorem EisensteinSeries.eisensteinSeries_tendstoLocallyUniformly {k : Int} (hk : LE.le 3 k) {N : Nat} (a : Fin 2ZMod N) :
      TendstoLocallyUniformly (fun (s : Finset (gammaSet N a).Elem) (x : UpperHalfPlane) => s.sum fun (x_1 : (gammaSet N a).Elem) => eisSummand k x_1.val x) (fun (x : UpperHalfPlane) => eisensteinSeries a k x) Filter.atTop

      The sum defining the Eisenstein series (of weight k and level Γ(N) with congruence condition a : Fin 2 → ZMod N) converges locally uniformly on .

      Variant of eisensteinSeries_tendstoLocallyUniformly formulated with maps ℂ → ℂ, which is nice to have for holomorphicity later.