Norm and trace maps #
Given two subgroups ๐ข, โ of GL(2, โ) with ๐ข.relindex โ โ 0 (i.e. ๐ข โ โ has finite index
in โ), we define a trace map from ModularForm (๐ข โ โ) k to ModularForm โ k.
instance
instMulActionSubtypeGeneralLinearGroupFinOfNatNatRealMemSubgroupQuotientSubgroupOf
{๐ข โ : Subgroup (GL (Fin 2) โ)}
:
MulAction (โฅโ) (โฅโ โงธ ๐ข.subgroupOf โ)
Equations
def
SlashInvariantForm.quotientFunc
{๐ข โ : Subgroup (GL (Fin 2) โ)}
{F : Type u_1}
(f : F)
[FunLike F UpperHalfPlane โ]
{k : โค}
[SlashInvariantFormClass F ๐ข k]
(q : โฅโ โงธ ๐ข.subgroupOf โ)
(ฯ : UpperHalfPlane)
:
For f invariant under ๐ข, this is a function on (โ โงธ ๐ข โ โ) ร โ โ โ which packages up the
translates of f by โ.
Equations
- SlashInvariantForm.quotientFunc f q ฯ = Quotient.liftOn q (fun (g : โฅโ) => SlashAction.map k (โg)โปยน (โf) ฯ) โฏ
Instances For
@[simp]
theorem
SlashInvariantForm.quotientFunc_mk
{๐ข โ : Subgroup (GL (Fin 2) โ)}
{F : Type u_1}
(f : F)
[FunLike F UpperHalfPlane โ]
{k : โค}
[SlashInvariantFormClass F ๐ข k]
(h : โฅโ)
:
theorem
SlashInvariantForm.quotientFunc_smul
{๐ข โ : Subgroup (GL (Fin 2) โ)}
{F : Type u_1}
(f : F)
[FunLike F UpperHalfPlane โ]
{k : โค}
[SlashInvariantFormClass F ๐ข k]
{h : GL (Fin 2) โ}
(hh : h โ โ)
(q : โฅโ โงธ ๐ข.subgroupOf โ)
:
def
SlashInvariantForm.trace
{๐ข : Subgroup (GL (Fin 2) โ)}
(โ : Subgroup (GL (Fin 2) โ))
{F : Type u_1}
(f : F)
[FunLike F UpperHalfPlane โ]
{k : โค}
[SlashInvariantFormClass F ๐ข k]
[๐ข.IsFiniteRelIndex โ]
:
SlashInvariantForm โ k
The trace of a slash-invariant form, as a slash-invariant form.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
SlashInvariantForm.coe_trace
{๐ข : Subgroup (GL (Fin 2) โ)}
(โ : Subgroup (GL (Fin 2) โ))
{F : Type u_1}
(f : F)
[FunLike F UpperHalfPlane โ]
{k : โค}
[SlashInvariantFormClass F ๐ข k]
[๐ข.IsFiniteRelIndex โ]
:
def
SlashInvariantForm.norm
{๐ข : Subgroup (GL (Fin 2) โ)}
(โ : Subgroup (GL (Fin 2) โ))
{F : Type u_1}
(f : F)
[FunLike F UpperHalfPlane โ]
{k : โค}
[SlashInvariantFormClass F ๐ข k]
[๐ข.IsFiniteRelIndex โ]
[โ.HasDetPlusMinusOne]
:
SlashInvariantForm โ (k * โ(Nat.card (โฅโ โงธ ๐ข.subgroupOf โ)))
The norm of a slash-invariant form, as a slash-invariant form.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
SlashInvariantForm.coe_norm
{๐ข : Subgroup (GL (Fin 2) โ)}
(โ : Subgroup (GL (Fin 2) โ))
{F : Type u_1}
(f : F)
[FunLike F UpperHalfPlane โ]
{k : โค}
[SlashInvariantFormClass F ๐ข k]
[๐ข.IsFiniteRelIndex โ]
[โ.HasDetPlusMinusOne]
:
def
ModularForm.trace
{๐ข : Subgroup (GL (Fin 2) โ)}
(โ : Subgroup (GL (Fin 2) โ))
{F : Type u_1}
(f : F)
[FunLike F UpperHalfPlane โ]
{k : โค}
[๐ข.IsFiniteRelIndex โ]
[ModularFormClass F ๐ข k]
:
ModularForm โ k
The trace of a modular form, as a modular form.
Equations
- ModularForm.trace โ f = { toSlashInvariantForm := SlashInvariantForm.trace โ f, holo' := โฏ, bdd_at_cusps' := โฏ }
Instances For
@[simp]
theorem
ModularForm.coe_trace
{๐ข : Subgroup (GL (Fin 2) โ)}
(โ : Subgroup (GL (Fin 2) โ))
{F : Type u_1}
(f : F)
[FunLike F UpperHalfPlane โ]
{k : โค}
[๐ข.IsFiniteRelIndex โ]
[ModularFormClass F ๐ข k]
:
โ(ModularForm.trace โ f) = โ q : โฅโ โงธ ๐ข.subgroupOf โ, SlashInvariantForm.quotientFunc f q
def
CuspForm.trace
{๐ข : Subgroup (GL (Fin 2) โ)}
(โ : Subgroup (GL (Fin 2) โ))
{F : Type u_1}
(f : F)
[FunLike F UpperHalfPlane โ]
{k : โค}
[๐ข.IsFiniteRelIndex โ]
[CuspFormClass F ๐ข k]
:
CuspForm โ k
The trace of a cusp form, as a cusp form.
Equations
- CuspForm.trace โ f = { toSlashInvariantForm := (ModularForm.trace โ f).toSlashInvariantForm, holo' := โฏ, zero_at_cusps' := โฏ }
Instances For
@[simp]
theorem
CuspForm.coe_trace
{๐ข : Subgroup (GL (Fin 2) โ)}
(โ : Subgroup (GL (Fin 2) โ))
{F : Type u_1}
(f : F)
[FunLike F UpperHalfPlane โ]
{k : โค}
[๐ข.IsFiniteRelIndex โ]
[CuspFormClass F ๐ข k]
:
โ(CuspForm.trace โ f) = โ q : โฅโ โงธ ๐ข.subgroupOf โ, SlashInvariantForm.quotientFunc f q
def
ModularForm.norm
{๐ข : Subgroup (GL (Fin 2) โ)}
(โ : Subgroup (GL (Fin 2) โ))
{F : Type u_1}
(f : F)
[FunLike F UpperHalfPlane โ]
{k : โค}
[๐ข.IsFiniteRelIndex โ]
[โ.HasDetPlusMinusOne]
[ModularFormClass F ๐ข k]
:
ModularForm โ (k * โ(Nat.card (โฅโ โงธ ๐ข.subgroupOf โ)))
The norm of a modular form, as a modular form.
Equations
- ModularForm.norm โ f = { toSlashInvariantForm := SlashInvariantForm.norm โ f, holo' := โฏ, bdd_at_cusps' := โฏ }
Instances For
@[simp]
theorem
ModularForm.coe_norm
{๐ข : Subgroup (GL (Fin 2) โ)}
(โ : Subgroup (GL (Fin 2) โ))
{F : Type u_1}
(f : F)
[FunLike F UpperHalfPlane โ]
{k : โค}
[๐ข.IsFiniteRelIndex โ]
[โ.HasDetPlusMinusOne]
[ModularFormClass F ๐ข k]
:
โ(ModularForm.norm โ f) = โ q : โฅโ โงธ ๐ข.subgroupOf โ, SlashInvariantForm.quotientFunc f q
theorem
ModularForm.norm_ne_zero
{๐ข : Subgroup (GL (Fin 2) โ)}
(โ : Subgroup (GL (Fin 2) โ))
{F : Type u_1}
{f : F}
[FunLike F UpperHalfPlane โ]
{k : โค}
[๐ข.IsFiniteRelIndex โ]
[โ.HasDetPlusMinusOne]
[ModularFormClass F ๐ข k]
(hf : โf โ 0)
:
theorem
ModularForm.norm_eq_zero_iff
{๐ข : Subgroup (GL (Fin 2) โ)}
(โ : Subgroup (GL (Fin 2) โ))
{F : Type u_1}
(f : F)
[FunLike F UpperHalfPlane โ]
{k : โค}
[๐ข.IsFiniteRelIndex โ]
[โ.HasDetPlusMinusOne]
[ModularFormClass F ๐ข k]
:
theorem
ModularForm.isZero_of_neg_weight
{๐ข : Subgroup (GL (Fin 2) โ)}
[๐ข.IsArithmetic]
{k : โค}
(hk : k < 0)
(f : ModularForm ๐ข k)
:
theorem
ModularForm.eq_const_of_weight_zero
{๐ข : Subgroup (GL (Fin 2) โ)}
[๐ข.IsArithmetic]
(f : ModularForm ๐ข 0)
:
โ (c : โ), โf = Function.const UpperHalfPlane c