Documentation

Mathlib.NumberTheory.ModularForms.Petersson

The Petersson scalar product #

For f, f' functions ℍ → ℂ, we define petersson k f f' to be the function τ ↦ conj (f τ) * f' τ * τ.im ^ k.

We show this function is (weight 0) invariant under Γ if f, f' are (weight k) invariant under Γ.

noncomputable def UpperHalfPlane.petersson (k : ) (f f' : UpperHalfPlane) (τ : UpperHalfPlane) :

The integrand in the Petersson scalar product of two modular forms.

Equations
Instances For
    theorem UpperHalfPlane.petersson_slash (k : ) (f f' : UpperHalfPlane) (g : GL (Fin 2) ) (τ : UpperHalfPlane) :
    petersson k (SlashAction.map k g f) (SlashAction.map k g f') τ = |(Matrix.GeneralLinearGroup.det g)| ^ (k - 2) * (σ g) (petersson k f f' (g τ))
    theorem SlashInvariantFormClass.petersson_smul {F : Type u_1} {F' : Type u_2} [FunLike F UpperHalfPlane ] [FunLike F' UpperHalfPlane ] {k : } {g : GL (Fin 2) } {τ : UpperHalfPlane} {Γ : Subgroup (GL (Fin 2) )} [Γ.HasDetOne] [SlashInvariantFormClass F Γ k] {f : F} [SlashInvariantFormClass F' Γ k] {f' : F'} (hg : g Γ) :
    UpperHalfPlane.petersson k (⇑f) (⇑f') (g τ) = UpperHalfPlane.petersson k (⇑f) (⇑f') τ