Documentation

Mathlib.NumberTheory.NumberField.Cyclotomic.Ideal

Ideals in cyclotomic fields #

In this file, we prove results about ideals in cyclotomic extensions of .

Main results #

instance IsCyclotomicExtension.Rat.isPrime_span_zeta_sub_one (p k : ) [hp : Fact (Nat.Prime p)] {K : Type u_1} [Field K] [NumberField K] [hK : IsCyclotomicExtension {p ^ (k + 1)} K] {ζ : K} ( : IsPrimitiveRoot ζ (p ^ (k + 1))) :
theorem IsCyclotomicExtension.Rat.associated_norm_zeta_sub_one (p k : ) [hp : Fact (Nat.Prime p)] {K : Type u_1} [Field K] [NumberField K] [hK : IsCyclotomicExtension {p ^ (k + 1)} K] {ζ : K} ( : IsPrimitiveRoot ζ (p ^ (k + 1))) :
theorem IsCyclotomicExtension.Rat.absNorm_span_zeta_sub_one (p k : ) [hp : Fact (Nat.Prime p)] {K : Type u_1} [Field K] [NumberField K] [hK : IsCyclotomicExtension {p ^ (k + 1)} K] {ζ : K} ( : IsPrimitiveRoot ζ (p ^ (k + 1))) :
theorem IsCyclotomicExtension.Rat.p_mem_span_zeta_sub_one (p k : ) [hp : Fact (Nat.Prime p)] {K : Type u_1} [Field K] [NumberField K] [hK : IsCyclotomicExtension {p ^ (k + 1)} K] {ζ : K} ( : IsPrimitiveRoot ζ (p ^ (k + 1))) :
theorem IsCyclotomicExtension.Rat.span_zeta_sub_one_ne_bot (p k : ) [hp : Fact (Nat.Prime p)] {K : Type u_1} [Field K] [NumberField K] [hK : IsCyclotomicExtension {p ^ (k + 1)} K] {ζ : K} ( : IsPrimitiveRoot ζ (p ^ (k + 1))) :
theorem IsCyclotomicExtension.Rat.liesOver_span_zeta_sub_one (p k : ) [hp : Fact (Nat.Prime p)] {K : Type u_1} [Field K] [NumberField K] [hK : IsCyclotomicExtension {p ^ (k + 1)} K] {ζ : K} ( : IsPrimitiveRoot ζ (p ^ (k + 1))) :
theorem IsCyclotomicExtension.Rat.inertiaDeg_span_zeta_sub_one (p k : ) [hp : Fact (Nat.Prime p)] {K : Type u_1} [Field K] [NumberField K] [hK : IsCyclotomicExtension {p ^ (k + 1)} K] {ζ : K} ( : IsPrimitiveRoot ζ (p ^ (k + 1))) :
theorem IsCyclotomicExtension.Rat.eq_span_zeta_sub_one_of_liesOver (p k : ) [hp : Fact (Nat.Prime p)] (K : Type u_1) [Field K] [NumberField K] [hK : IsCyclotomicExtension {p ^ (k + 1)} K] {ζ : K} ( : IsPrimitiveRoot ζ (p ^ (k + 1))) (P : Ideal (NumberField.RingOfIntegers K)) [hP₁ : P.IsPrime] [hP₂ : P.LiesOver (Ideal.span {p})] :