Ideals in cyclotomic fields #
In this file, we prove results about ideals in cyclotomic extensions of ℚ.
Main results #
IsCyclotomicExtension.Rat.ncard_primesOver_of_prime_pow: there is only one prime ideal above the primepinℚ(ζ_pᵏ)IsCyclotomicExtension.Rat.inertiaDeg_eq_of_prime_pow: the residual degree of the prime ideal abovepinℚ(ζ_pᵏ)is1.IsCyclotomicExtension.Rat.ramificationIdxIn_eq_of_prime_pow: the ramification index of the prime ideal abovepinℚ(ζ_pᵏ)isp ^ (k - 1) * (p - 1).IsCyclotomicExtension.Rat.inertiaDegIn_eq_of_not_dvd: if the primepdoes not dividem, then the inertia degree ofpinℚ(ζₘ)is the order ofpmodulom.IsCyclotomicExtension.Rat.ramificationIdxIn_eq_of_not_dvd: if the primepdoes not dividem, then the ramification index ofpinℚ(ζₘ)is1.IsCyclotomicExtension.Rat.inertiaDegIn_eq: writen = p ^ (k + 1) * mwhere the primepdoes not dividem, then the inertia degree ofpinℚ(ζₙ)is the order ofpmodulom.IsCyclotomicExtension.Rat.ramificationIdxIn_eq: writen = p ^ (k + 1) * mwhere the primepdoes not dividem, then the ramification index ofpinℚ(ζₙ)isp ^ k * (p - 1).
Alias of IsCyclotomicExtension.Rat.ramificationIdxIn_eq_of_prime.
Alias of IsCyclotomicExtension.Rat.inertiaDeg_eq_of_not_dvd.
Alias of IsCyclotomicExtension.Rat.ramificationIdx_eq_of_not_dvd.
Alias of IsCyclotomicExtension.Rat.inertiaDegIn_eq_of_not_dvd.
Alias of IsCyclotomicExtension.Rat.ramificationIdxIn_eq_of_not_dvd.
Write n = p ^ (k + 1) * m where the prime p does not divide m, then the inertia degree of
p in ℚ(ζₙ) is the order of p modulo m.
Write n = p ^ (k + 1) * m where the prime p does not divide m, then the ramification index
of p in ℚ(ζₙ) is p ^ k * (p - 1).