(Absolute) Discriminant and Different Ideal #
Main results #
NumberField.absNorm_differentIdeal
: The norm ofdifferentIdeal ℤ 𝒪
is the absolute discriminant.
theorem
NumberField.absNorm_differentIdeal
{K : Type u_1}
{𝒪 : Type u_2}
[Field K]
[NumberField K]
[CommRing 𝒪]
[Algebra 𝒪 K]
[IsFractionRing 𝒪 K]
[IsIntegralClosure 𝒪 ℤ K]
[IsDedekindDomain 𝒪]
[CharZero 𝒪]
[Module.Finite ℤ 𝒪]
:
theorem
NumberField.discr_mem_differentIdeal
{K : Type u_1}
{𝒪 : Type u_2}
[Field K]
[NumberField K]
[CommRing 𝒪]
[Algebra 𝒪 K]
[IsFractionRing 𝒪 K]
[IsIntegralClosure 𝒪 ℤ K]
[IsDedekindDomain 𝒪]
[CharZero 𝒪]
[Module.Finite ℤ 𝒪]
: