Documentation

Mathlib.NumberTheory.NumberField.Discriminant.Different

(Absolute) Discriminant and Different Ideal #

Main results #

theorem NumberField.discr_mem_differentIdeal (K : Type u_1) (𝒪 : Type u_2) [Field K] [NumberField K] [CommRing 𝒪] [Algebra 𝒪 K] [IsFractionRing 𝒪 K] [IsIntegralClosure 𝒪 K] [IsDedekindDomain 𝒪] [CharZero 𝒪] [Module.Finite 𝒪] :
theorem NumberField.natAbs_discr_eq_absNorm_differentIdeal_mul_natAbs_discr_pow (K : Type u_1) (𝒪 : Type u_2) [Field K] [NumberField K] [CommRing 𝒪] [Algebra 𝒪 K] [IsFractionRing 𝒪 K] [IsIntegralClosure 𝒪 K] [IsDedekindDomain 𝒪] [CharZero 𝒪] [Module.Finite 𝒪] (L : Type u_3) (𝒪' : Type u_4) [Field L] [NumberField L] [CommRing 𝒪'] [Algebra 𝒪' L] [IsFractionRing 𝒪' L] [IsIntegralClosure 𝒪' L] [IsDedekindDomain 𝒪'] [CharZero 𝒪'] [Algebra K L] [Algebra 𝒪 𝒪'] [Algebra 𝒪 L] [IsScalarTower 𝒪 K L] [IsScalarTower 𝒪 𝒪' L] [NoZeroSMulDivisors 𝒪 𝒪'] [Module.Free 𝒪'] [Module.Finite 𝒪'] [Module.Finite 𝒪 𝒪'] :
theorem NumberField.discr_dvd_discr (K : Type u_1) [Field K] [NumberField K] (L : Type u_3) [Field L] [NumberField L] [Algebra K L] :
theorem NumberField.linearDisjoint_of_isGalois_isCoprime_discr (L : Type u_3) [Field L] [NumberField L] (K₁ K₂ : IntermediateField L) [IsGalois K₁] (h : IsCoprime (discr K₁) (discr K₂)) :
K₁.LinearDisjoint K₂

Let K₁ and K₂ be two number fields and assume that K₁/ℚ is Galois. If discr K₁ and discr K₂ are coprime, then they are linear disjoint over .

Let K₁ and K₂ be two number fields and assume that their different ideals (over ℤ) are coprime. Then, the absolute value of the discriminant of their compositum is equal to |discr K₁| ^ [K₂ : ℚ] * |discr K₂| ^ [K₁ : ℚ].