(Absolute) Discriminant and Different Ideal #
Main results #
NumberField.absNorm_differentIdeal: The norm ofdifferentIdeal ℤ 𝒪is the absolute discriminant.NumberField.natAbs_discr_eq_absNorm_differentIdeal_mul_natAbs_discr_pow: Formula for the absolute discriminant ofLin terms of that ofKin an extensionL/K.NumberField.natAbs_discr_eq_natAbs_discr_pow_mul_natAbs_discr_pow: Assume thatK₁andK₂are two linear disjoint number fields with coprime different ideals. Then, the absolute value of the discriminant of their compositum is equal to|discr K₁| ^ [K₂ : ℚ] * |discr K₂| ^ [K₁ : ℚ].
theorem
NumberField.absNorm_differentIdeal
(K : Type u_1)
(𝒪 : Type u_2)
[Field K]
[NumberField K]
[CommRing 𝒪]
[Algebra 𝒪 K]
[IsFractionRing 𝒪 K]
[IsIntegralClosure 𝒪 ℤ K]
[IsDedekindDomain 𝒪]
[CharZero 𝒪]
[Module.Finite ℤ 𝒪]
:
theorem
NumberField.discr_mem_differentIdeal
(K : Type u_1)
(𝒪 : Type u_2)
[Field K]
[NumberField K]
[CommRing 𝒪]
[Algebra 𝒪 K]
[IsFractionRing 𝒪 K]
[IsIntegralClosure 𝒪 ℤ K]
[IsDedekindDomain 𝒪]
[CharZero 𝒪]
[Module.Finite ℤ 𝒪]
:
theorem
NumberField.natAbs_discr_eq_absNorm_differentIdeal_mul_natAbs_discr_pow
(K : Type u_1)
(𝒪 : Type u_2)
[Field K]
[NumberField K]
[CommRing 𝒪]
[Algebra 𝒪 K]
[IsFractionRing 𝒪 K]
[IsIntegralClosure 𝒪 ℤ K]
[IsDedekindDomain 𝒪]
[CharZero 𝒪]
[Module.Finite ℤ 𝒪]
(L : Type u_3)
(𝒪' : Type u_4)
[Field L]
[NumberField L]
[CommRing 𝒪']
[Algebra 𝒪' L]
[IsFractionRing 𝒪' L]
[IsIntegralClosure 𝒪' ℤ L]
[IsDedekindDomain 𝒪']
[CharZero 𝒪']
[Algebra K L]
[Algebra 𝒪 𝒪']
[Algebra 𝒪 L]
[IsScalarTower 𝒪 K L]
[IsScalarTower 𝒪 𝒪' L]
[NoZeroSMulDivisors 𝒪 𝒪']
[Module.Free ℤ 𝒪']
[Module.Finite ℤ 𝒪']
[Module.Finite 𝒪 𝒪']
:
theorem
NumberField.isCoprime_differentIdeal_of_isCoprime_discr
(L : Type u_3)
[Field L]
{K₁ : Type u_4}
{K₂ : Type u_5}
[Field K₁]
[NumberField K₁]
[Field K₂]
[NumberField K₂]
[Algebra K₁ L]
[Algebra K₂ L]
(h : IsCoprime (discr K₁) (discr K₂))
:
IsCoprime (Ideal.map (algebraMap (RingOfIntegers K₁) (RingOfIntegers L)) (differentIdeal ℤ (RingOfIntegers K₁)))
(Ideal.map (algebraMap (RingOfIntegers K₂) (RingOfIntegers L)) (differentIdeal ℤ (RingOfIntegers K₂)))
theorem
NumberField.discr_dvd_discr
(K : Type u_1)
[Field K]
[NumberField K]
(L : Type u_3)
[Field L]
[NumberField L]
[Algebra K L]
:
theorem
NumberField.linearDisjoint_of_isGalois_isCoprime_discr
(L : Type u_3)
[Field L]
[NumberField L]
(K₁ K₂ : IntermediateField ℚ L)
[IsGalois ℚ ↥K₁]
(h : IsCoprime (discr ↥K₁) (discr ↥K₂))
:
K₁.LinearDisjoint ↥K₂
Let K₁ and K₂ be two number fields and assume that K₁/ℚ is Galois. If discr K₁ and
discr K₂ are coprime, then they are linear disjoint over ℚ.
theorem
NumberField.natAbs_discr_eq_natAbs_discr_pow_mul_natAbs_discr_pow
(L : Type u_3)
[Field L]
[NumberField L]
(K₁ K₂ : IntermediateField ℚ L)
(h₁ : K₁.LinearDisjoint ↥K₂)
(h₂ : K₁ ⊔ K₂ = ⊤)
(h₃ :
IsCoprime (Ideal.map (algebraMap (RingOfIntegers ↥K₁) (RingOfIntegers L)) (differentIdeal ℤ (RingOfIntegers ↥K₁)))
(Ideal.map (algebraMap (RingOfIntegers ↥K₂) (RingOfIntegers L)) (differentIdeal ℤ (RingOfIntegers ↥K₂))))
:
Let K₁ and K₂ be two number fields and assume that their different ideals (over ℤ) are coprime.
Then, the absolute value of the discriminant of their compositum is equal to
|discr K₁| ^ [K₂ : ℚ] * |discr K₂| ^ [K₁ : ℚ].