Documentation

Mathlib.NumberTheory.NumberField.Units.Basic

Units of a number field #

We prove some basic results on the group (π“ž K)Λ£ of units of the ring of integers π“ž K of a number field K and its torsion subgroup.

Main definition #

Main results #

Tags #

number field, units

The torsion subgroup of the group of units.

Equations
Instances For

    The torsion subgroup is cyclic.

    Equations
    • β‹― = β‹―

    The order of the torsion subgroup as a positive integer.

    Equations
    Instances For
      theorem NumberField.Units.rootsOfUnity_eq_one (K : Type u_1) [Field K] [NumberField K] {k : β„•+} (hc : (↑k).Coprime ↑(NumberField.Units.torsionOrder K)) {ΞΆ : (NumberField.RingOfIntegers K)Λ£} :

      If k does not divide torsionOrder then there are no nontrivial roots of unity of order dividing k.

      The group of roots of unity of order dividing torsionOrder is equal to the torsion group.