Units of a number field #
We prove some basic results on the group (π K)Λ£
of units of the ring of integers π K
of a number
field K
and its torsion subgroup.
Main definition #
NumberField.Units.torsion
: the torsion subgroup of a number field.
Main results #
NumberField.isUnit_iff_norm
: an algebraic integerx : π K
is a unit if and only if|norm β x| = 1
.NumberField.Units.mem_torsion
: a unitx : (π K)Λ£
is torsion iffw x = 1
for all infinite placesw
ofK
.
Tags #
number field, units
theorem
NumberField.isUnit_iff_norm
{K : Type u_1}
[Field K]
[NumberField K]
{x : RingOfIntegers K}
:
IsUnit x β |β((RingOfIntegers.norm β) x)| = 1
instance
NumberField.Units.instCoeHTCUnitsRingOfIntegers
(K : Type u_1)
[Field K]
:
CoeHTC (RingOfIntegers K)Λ£ K
Equations
- NumberField.Units.instCoeHTCUnitsRingOfIntegers K = { coe := fun (x : (NumberField.RingOfIntegers K)Λ£) => (algebraMap (NumberField.RingOfIntegers K) K) βx }
theorem
NumberField.Units.coe_injective
(K : Type u_1)
[Field K]
:
Function.Injective fun (x : (RingOfIntegers K)Λ£) => (algebraMap (RingOfIntegers K) K) βx
theorem
NumberField.Units.coe_coe
{K : Type u_1}
[Field K]
(u : (RingOfIntegers K)Λ£)
:
ββu = (algebraMap (RingOfIntegers K) K) βu
theorem
NumberField.Units.coe_mul
{K : Type u_1}
[Field K]
(x y : (RingOfIntegers K)Λ£)
:
(algebraMap (RingOfIntegers K) K) β(x * y) = (algebraMap (RingOfIntegers K) K) βx * (algebraMap (RingOfIntegers K) K) βy
theorem
NumberField.Units.coe_pow
{K : Type u_1}
[Field K]
(x : (RingOfIntegers K)Λ£)
(n : β)
:
(algebraMap (RingOfIntegers K) K) β(x ^ n) = (algebraMap (RingOfIntegers K) K) βx ^ n
theorem
NumberField.Units.coe_zpow
{K : Type u_1}
[Field K]
(x : (RingOfIntegers K)Λ£)
(n : β€)
:
(algebraMap (RingOfIntegers K) K) β(x ^ n) = (algebraMap (RingOfIntegers K) K) βx ^ n
theorem
NumberField.Units.coe_one
{K : Type u_1}
[Field K]
:
(algebraMap (RingOfIntegers K) K) β1 = 1
theorem
NumberField.Units.coe_neg_one
{K : Type u_1}
[Field K]
:
(algebraMap (RingOfIntegers K) K) β(-1) = -1
theorem
NumberField.Units.coe_ne_zero
{K : Type u_1}
[Field K]
(x : (RingOfIntegers K)Λ£)
:
(algebraMap (RingOfIntegers K) K) βx β 0
@[simp]
theorem
NumberField.Units.norm
(K : Type u_1)
[Field K]
[NumberField K]
(x : (RingOfIntegers K)Λ£)
:
|(Algebra.norm β) ((algebraMap (RingOfIntegers K) K) βx)| = 1
The torsion subgroup of the group of units.
Equations
Instances For
theorem
NumberField.Units.mem_torsion
(K : Type u_1)
[Field K]
{x : (RingOfIntegers K)Λ£}
[NumberField K]
:
x β torsion K β β (w : InfinitePlace K), w ((algebraMap (RingOfIntegers K) K) βx) = 1
instance
NumberField.Units.instFintypeSubtypeUnitsRingOfIntegersMemSubgroupTorsion
(K : Type u_1)
[Field K]
[NumberField K]
:
The torsion subgroup is finite.
instance
NumberField.Units.instIsCyclicSubtypeUnitsRingOfIntegersMemSubgroupTorsion
(K : Type u_1)
[Field K]
[NumberField K]
:
The torsion subgroup is cyclic.
The order of the torsion subgroup as a positive integer.
Equations
- NumberField.Units.torsionOrder K = β¨Fintype.card β₯(NumberField.Units.torsion K), β―β©
Instances For
theorem
NumberField.Units.rootsOfUnity_eq_one
(K : Type u_1)
[Field K]
[NumberField K]
{k : β+}
(hc : (βk).Coprime β(torsionOrder K))
{ΞΆ : (RingOfIntegers K)Λ£}
:
ΞΆ β rootsOfUnity (βk) (RingOfIntegers K) β ΞΆ = 1
If k
does not divide torsionOrder
then there are no nontrivial roots of unity of
order dividing k
.
theorem
NumberField.Units.rootsOfUnity_eq_torsion
(K : Type u_1)
[Field K]
[NumberField K]
:
rootsOfUnity (β(torsionOrder K)) (RingOfIntegers K) = torsion K
The group of roots of unity of order dividing torsionOrder
is equal to the torsion
group.