Nonempty finite linear orders #
This defines NonemptyFinLinOrd
, the category of nonempty finite linear
orders with monotone maps. This is the index category for simplicial objects.
Note: NonemptyFinLinOrd
is not a subcategory of FinBddDistLat
because its morphisms do not
preserve ⊥
and ⊤
.
Equations
- Eq NonemptyFinLinOrd.instCoeSortType { coe := fun (X : NonemptyFinLinOrd) => X.carrier }
Instances For
def
NonemptyFinLinOrd.instConcreteCategoryOrderHomCarrier :
CategoryTheory.ConcreteCategory NonemptyFinLinOrd fun (x1 x2 : NonemptyFinLinOrd) => OrderHom x1.carrier x2.carrier
Equations
Instances For
Equations
Instances For
@[reducible, inline]
Construct a bundled NonemptyFinLinOrd
from the underlying type and typeclass.
Equations
- Eq (NonemptyFinLinOrd.of α) { carrier := α, str := inst✝, nonempty := inst✝², fintype := inst✝¹ }
Instances For
@[reducible, inline]
abbrev
NonemptyFinLinOrd.ofHom
{X Y : Type u}
[Nonempty X]
[LinearOrder X]
[Fintype X]
[Nonempty Y]
[LinearOrder Y]
[Fintype Y]
(f : OrderHom X Y)
:
Quiver.Hom (of X) (of Y)
Typecheck a OrderHom
as a morphism in NonemptyFinLinOrd
.
Equations
Instances For
theorem
NonemptyFinLinOrd.hom_comp
{X Y Z : NonemptyFinLinOrd}
(f : Quiver.Hom X Y)
(g : Quiver.Hom Y Z)
:
Eq (LinOrd.Hom.hom (CategoryTheory.CategoryStruct.comp f g)) ((LinOrd.Hom.hom g).comp (LinOrd.Hom.hom f))
theorem
NonemptyFinLinOrd.comp_apply
{X Y Z : NonemptyFinLinOrd}
(f : Quiver.Hom X Y)
(g : Quiver.Hom Y Z)
(x : X.carrier)
:
theorem
NonemptyFinLinOrd.hom_ext
{X Y : NonemptyFinLinOrd}
{f g : Quiver.Hom X Y}
(hf : Eq (LinOrd.Hom.hom f) (LinOrd.Hom.hom g))
:
Eq f g
theorem
NonemptyFinLinOrd.hom_ext_iff
{X Y : NonemptyFinLinOrd}
{f g : Quiver.Hom X Y}
:
Iff (Eq f g) (Eq (LinOrd.Hom.hom f) (LinOrd.Hom.hom g))
theorem
NonemptyFinLinOrd.hom_ofHom
{X Y : Type u}
[Nonempty X]
[LinearOrder X]
[Fintype X]
[Nonempty Y]
[LinearOrder Y]
[Fintype Y]
(f : OrderHom X Y)
:
Eq (LinOrd.Hom.hom (ofHom f)) f
theorem
NonemptyFinLinOrd.ofHom_hom
{X Y : NonemptyFinLinOrd}
(f : Quiver.Hom X Y)
:
Eq (ofHom (LinOrd.Hom.hom f)) f
Equations
- Eq NonemptyFinLinOrd.instInhabited { default := NonemptyFinLinOrd.of PUnit }
Instances For
Equations
- One or more equations did not get rendered due to their size.
Instances For
Constructs an equivalence between nonempty finite linear orders from an order isomorphism between them.
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
NonemptyFinLinOrd.Iso.mk_hom
{α β : NonemptyFinLinOrd}
(e : OrderIso α.carrier β.carrier)
:
Eq (mk e).hom (ofHom (OrderHomClass.toOrderHom e))
OrderDual
as a functor.
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
NonemptyFinLinOrd.dual_map
{X✝ Y✝ : NonemptyFinLinOrd}
(f : Quiver.Hom X✝ Y✝)
:
Eq (dual.map f) (ofHom (DFunLike.coe OrderHom.dual (LinOrd.Hom.hom f)))
The equivalence between NonemptyFinLinOrd
and itself induced by OrderDual
both ways.
Equations
- One or more equations did not get rendered due to their size.
Instances For
The forgetful functor NonemptyFinLinOrd ⥤ FinPartOrd
and OrderDual
commute.
Equations
- One or more equations did not get rendered due to their size.
Instances For
The generating arrow i ⟶ i+1
in the category Fin n
Equations
- Eq i.hom_succ (CategoryTheory.homOfLE ⋯)