Documentation

Mathlib.Order.Category.NonemptyFinLinOrd

Nonempty finite linear orders #

This defines NonemptyFinLinOrd, the category of nonempty finite linear orders with monotone maps. This is the index category for simplicial objects.

Note: NonemptyFinLinOrd is not a subcategory of FinBddDistLat because its morphisms do not preserve and .

structure NonemptyFinLinOrdextends LinOrd :
Type (u_1 + 1)

The category of nonempty finite linear orders.

Instances For
    @[reducible, inline]

    Construct a bundled NonemptyFinLinOrd from the underlying type and typeclass.

    Equations
    Instances For
      theorem NonemptyFinLinOrd.coe_of (α : Type u_1) [Nonempty α] [Fintype α] [LinearOrder α] :
      Eq (of α).carrier α
      @[reducible, inline]
      abbrev NonemptyFinLinOrd.ofHom {X Y : Type u} [Nonempty X] [LinearOrder X] [Fintype X] [Nonempty Y] [LinearOrder Y] [Fintype Y] (f : OrderHom X Y) :
      Quiver.Hom (of X) (of Y)

      Typecheck a OrderHom as a morphism in NonemptyFinLinOrd.

      Equations
      Instances For
        Equations
        • One or more equations did not get rendered due to their size.
        Instances For

          Constructs an equivalence between nonempty finite linear orders from an order isomorphism between them.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For

            OrderDual as a functor.

            Equations
            • One or more equations did not get rendered due to their size.
            Instances For

              The equivalence between NonemptyFinLinOrd and itself induced by OrderDual both ways.

              Equations
              • One or more equations did not get rendered due to their size.
              Instances For
                def Fin.hom_succ {n : Nat} (i : Fin n) :

                The generating arrow i ⟶ i+1 in the category Fin n

                Equations
                Instances For