Documentation

Mathlib.Order.Filter.Basic

Theory of filters on sets #

A filter on a type α is a collection of sets of α which contains the whole α, is upwards-closed, and is stable under intersection. They are mostly used to abstract two related kinds of ideas:

Main definitions #

In this file, we endow Filter α it with a complete lattice structure. This structure is lifted from the lattice structure on Set (Set X) using the Galois insertion which maps a filter to its elements in one direction, and an arbitrary set of sets to the smallest filter containing it in the other direction. We also prove Filter is a monadic functor, with a push-forward operation Filter.map and a pull-back operation Filter.comap that form a Galois connections for the order on filters.

The examples of filters appearing in the description of the two motivating ideas are:

The predicate "happening eventually" is Filter.Eventually, and "happening often" is Filter.Frequently, whose definitions are immediate after Filter is defined (but they come rather late in this file in order to immediately relate them to the lattice structure).

Notations #

References #

Important note: Bourbaki requires that a filter on X cannot contain all sets of X, which we do not require. This gives Filter X better formal properties, in particular a bottom element for its lattice structure, at the cost of including the assumption [NeBot f] in a number of lemmas and definitions.

def Filter.inhabitedMem {α : Type u} {f : Filter α} :
Inhabited (Subtype fun (s : Set α) => Membership.mem f s)
Equations
Instances For
    theorem Filter.filter_eq_iff {α : Type u} {f g : Filter α} :
    Iff (Eq f g) (Eq f.sets g.sets)
    theorem Filter.sets_subset_sets {α : Type u} {f g : Filter α} :
    theorem Filter.coext {α : Type u} {f g : Filter α} (h : ∀ (s : Set α), Iff (Membership.mem f (HasCompl.compl s)) (Membership.mem g (HasCompl.compl s))) :
    Eq f g

    An extensionality lemma that is useful for filters with good lemmas about sᶜ ∈ f (e.g., Filter.comap, Filter.coprod, Filter.Coprod, Filter.cofinite).

    def Filter.instTransSetSupersetMem {α : Type u} :
    Trans (fun (x1 x2 : Set α) => Superset x1 x2) (fun (x1 : Set α) (x2 : Filter α) => Membership.mem x2 x1) fun (x1 : Set α) (x2 : Filter α) => Membership.mem x2 x1
    Equations
    Instances For
      Equations
      Instances For
        theorem Filter.inter_mem_iff {α : Type u} {f : Filter α} {s t : Set α} :
        theorem Filter.diff_mem {α : Type u} {f : Filter α} {s t : Set α} (hs : Membership.mem f s) (ht : Membership.mem f (HasCompl.compl t)) :
        theorem Filter.congr_sets {α : Type u} {f : Filter α} {s t : Set α} (h : Membership.mem f (setOf fun (x : α) => Iff (Membership.mem s x) (Membership.mem t x))) :
        theorem Filter.copy_eq {α : Type u} {f : Filter α} {S : Set (Set α)} (hmem : ∀ (s : Set α), Iff (Membership.mem S s) (Membership.mem f s)) :
        Eq (f.copy S hmem) f
        theorem Filter.biInter_mem' {α : Type u} {f : Filter α} {β : Type v} {s : βSet α} {is : Set β} (hf : is.Subsingleton) :
        Iff (Membership.mem f (Set.iInter fun (i : β) => Set.iInter fun (h : Membership.mem is i) => s i)) (∀ (i : β), Membership.mem is iMembership.mem f (s i))

        Weaker version of Filter.biInter_mem that assumes Subsingleton β rather than Finite β.

        theorem Filter.iInter_mem' {α : Type u} {f : Filter α} {β : Sort v} {s : βSet α} [Subsingleton β] :
        Iff (Membership.mem f (Set.iInter fun (i : β) => s i)) (∀ (i : β), Membership.mem f (s i))

        Weaker version of Filter.iInter_mem that assumes Subsingleton β rather than Finite β.

        theorem Filter.exists_mem_subset_iff {α : Type u} {f : Filter α} {s : Set α} :
        Iff (Exists fun (t : Set α) => And (Membership.mem f t) (HasSubset.Subset t s)) (Membership.mem f s)
        theorem Filter.monotone_mem {α : Type u} {f : Filter α} :
        Monotone fun (s : Set α) => Membership.mem f s
        theorem Filter.exists_mem_and_iff {α : Type u} {f : Filter α} {P Q : Set αProp} (hP : Antitone P) (hQ : Antitone Q) :
        Iff (And (Exists fun (u : Set α) => And (Membership.mem f u) (P u)) (Exists fun (u : Set α) => And (Membership.mem f u) (Q u))) (Exists fun (u : Set α) => And (Membership.mem f u) (And (P u) (Q u)))
        theorem Filter.forall_in_swap {α : Type u} {f : Filter α} {β : Type u_1} {p : Set αβProp} :
        Iff (∀ (a : Set α), Membership.mem f a∀ (b : β), p a b) (∀ (b : β) (a : Set α), Membership.mem f ap a b)
        theorem Filter.not_le {α : Type u} {f g : Filter α} :
        Iff (Not (LE.le f g)) (Exists fun (s : Set α) => And (Membership.mem g s) (Not (Membership.mem f s)))
        inductive Filter.GenerateSets {α : Type u} (g : Set (Set α)) :
        Set αProp

        GenerateSets g s: s is in the filter closure of g.

        Instances For
          def Filter.generate {α : Type u} (g : Set (Set α)) :

          generate g is the largest filter containing the sets g.

          Equations
          Instances For
            theorem Filter.mem_generate_of_mem {α : Type u} {s : Set (Set α)} {U : Set α} (h : Membership.mem s U) :
            theorem Filter.le_generate_iff {α : Type u} {s : Set (Set α)} {f : Filter α} :
            def Filter.mkOfClosure {α : Type u} (s : Set (Set α)) (hs : Eq (generate s).sets s) :

            mkOfClosure s hs constructs a filter on α whose elements set is exactly s : Set (Set α), provided one gives the assumption hs : (generate s).sets = s.

            Equations
            • Eq (Filter.mkOfClosure s hs) { sets := s, univ_sets := , sets_of_superset := , inter_sets := }
            Instances For
              theorem Filter.mkOfClosure_sets {α : Type u} {s : Set (Set α)} {hs : Eq (generate s).sets s} :

              Galois insertion from sets of sets into filters.

              Equations
              Instances For
                theorem Filter.mem_inf_iff {α : Type u} {f g : Filter α} {s : Set α} :
                Iff (Membership.mem (Min.min f g) s) (Exists fun (t₁ : Set α) => And (Membership.mem f t₁) (Exists fun (t₂ : Set α) => And (Membership.mem g t₂) (Eq s (Inter.inter t₁ t₂))))
                theorem Filter.mem_inf_of_left {α : Type u} {f g : Filter α} {s : Set α} (h : Membership.mem f s) :
                theorem Filter.mem_inf_of_right {α : Type u} {f g : Filter α} {s : Set α} (h : Membership.mem g s) :
                theorem Filter.inter_mem_inf {α : Type u} {f g : Filter α} {s t : Set α} (hs : Membership.mem f s) (ht : Membership.mem g t) :
                theorem Filter.mem_inf_of_inter {α : Type u} {f g : Filter α} {s t u : Set α} (hs : Membership.mem f s) (ht : Membership.mem g t) (h : HasSubset.Subset (Inter.inter s t) u) :
                theorem Filter.mem_inf_iff_superset {α : Type u} {f g : Filter α} {s : Set α} :
                Iff (Membership.mem (Min.min f g) s) (Exists fun (t₁ : Set α) => And (Membership.mem f t₁) (Exists fun (t₂ : Set α) => And (Membership.mem g t₂) (HasSubset.Subset (Inter.inter t₁ t₂) s)))

                Complete lattice structure on Filter α.

                Equations
                • One or more equations did not get rendered due to their size.
                Instances For
                  Equations
                  Instances For
                    theorem Filter.NeBot.ne {α : Type u} {f : Filter α} (hf : f.NeBot) :
                    theorem Filter.not_neBot {α : Type u} {f : Filter α} :
                    theorem Filter.NeBot.mono {α : Type u} {f g : Filter α} (hf : f.NeBot) (hg : LE.le f g) :
                    theorem Filter.neBot_of_le {α : Type u} {f g : Filter α} [hf : f.NeBot] (hg : LE.le f g) :
                    theorem Filter.sup_neBot {α : Type u} {f g : Filter α} :
                    theorem Filter.not_disjoint_self_iff {α : Type u} {f : Filter α} :
                    Iff (Not (Disjoint f f)) f.NeBot
                    theorem Filter.eq_or_neBot {α : Type u} (f : Filter α) :

                    Either f = ⊥ or Filter.NeBot f. This is a version of eq_or_ne that uses Filter.NeBot as the second alternative, to be used as an instance.

                    theorem Filter.sup_sets_eq {α : Type u} {f g : Filter α} :
                    theorem Filter.sSup_sets_eq {α : Type u} {s : Set (Filter α)} :
                    Eq (SupSet.sSup s).sets (Set.iInter fun (f : Filter α) => Set.iInter fun (h : Membership.mem s f) => f.sets)
                    theorem Filter.iSup_sets_eq {α : Type u} {ι : Sort x} {f : ιFilter α} :
                    Eq (iSup f).sets (Set.iInter fun (i : ι) => (f i).sets)
                    theorem Filter.generate_union {α : Type u} {s t : Set (Set α)} :
                    theorem Filter.generate_iUnion {α : Type u} {ι : Sort x} {s : ιSet (Set α)} :
                    Eq (generate (Set.iUnion fun (i : ι) => s i)) (iInf fun (i : ι) => generate (s i))
                    theorem Filter.mem_sup {α : Type u} {f g : Filter α} {s : Set α} :
                    theorem Filter.union_mem_sup {α : Type u} {f g : Filter α} {s t : Set α} (hs : Membership.mem f s) (ht : Membership.mem g t) :
                    theorem Filter.mem_iSup {α : Type u} {ι : Sort x} {x : Set α} {f : ιFilter α} :
                    Iff (Membership.mem (iSup f) x) (∀ (i : ι), Membership.mem (f i) x)
                    theorem Filter.iSup_neBot {α : Type u} {ι : Sort x} {f : ιFilter α} :
                    Iff (iSup fun (i : ι) => f i).NeBot (Exists fun (i : ι) => (f i).NeBot)
                    theorem Filter.iInf_eq_generate {α : Type u} {ι : Sort x} (s : ιFilter α) :
                    Eq (iInf s) (generate (Set.iUnion fun (i : ι) => (s i).sets))
                    theorem Filter.mem_iInf_of_mem {α : Type u} {ι : Sort x} {f : ιFilter α} (i : ι) {s : Set α} (hs : Membership.mem (f i) s) :
                    Membership.mem (iInf fun (i : ι) => f i) s
                    theorem Filter.le_principal_iff {α : Type u} {s : Set α} {f : Filter α} :
                    theorem Filter.Iic_principal {α : Type u} (s : Set α) :
                    Eq (Set.Iic (principal s)) (setOf fun (l : Filter α) => Membership.mem l s)
                    theorem Filter.principal_mono {α : Type u} {s t : Set α} :

                    Alias of the reverse direction of Filter.principal_mono.

                    theorem Filter.principal_eq_iff_eq {α : Type u} {s t : Set α} :
                    Iff (Eq (principal s) (principal t)) (Eq s t)
                    theorem Filter.generate_eq_biInf {α : Type u} (S : Set (Set α)) :
                    Eq (generate S) (iInf fun (s : Set α) => iInf fun (h : Membership.mem S s) => principal s)

                    Lattice equations #

                    theorem Filter.nonempty_of_mem {α : Type u} {f : Filter α} [hf : f.NeBot] {s : Set α} (hs : Membership.mem f s) :
                    theorem Filter.NeBot.nonempty_of_mem {α : Type u} {f : Filter α} (hf : f.NeBot) {s : Set α} (hs : Membership.mem f s) :
                    theorem Filter.nonempty_of_neBot {α : Type u} (f : Filter α) [f.NeBot] :
                    theorem Filter.compl_not_mem {α : Type u} {f : Filter α} {s : Set α} [f.NeBot] (h : Membership.mem f s) :
                    theorem Filter.disjoint_iff {α : Type u} {f g : Filter α} :
                    Iff (Disjoint f g) (Exists fun (s : Set α) => And (Membership.mem f s) (Exists fun (t : Set α) => And (Membership.mem g t) (Disjoint s t)))
                    theorem Filter.disjoint_of_disjoint_of_mem {α : Type u} {f g : Filter α} {s t : Set α} (h : Disjoint s t) (hs : Membership.mem f s) (ht : Membership.mem g t) :
                    theorem Filter.NeBot.not_disjoint {α : Type u} {f : Filter α} {s t : Set α} (hf : f.NeBot) (hs : Membership.mem f s) (ht : Membership.mem f t) :
                    theorem Filter.inf_eq_bot_iff {α : Type u} {f g : Filter α} :
                    Iff (Eq (Min.min f g) Bot.bot) (Exists fun (U : Set α) => And (Membership.mem f U) (Exists fun (V : Set α) => And (Membership.mem g V) (Eq (Inter.inter U V) EmptyCollection.emptyCollection)))
                    def Filter.unique {α : Type u} [IsEmpty α] :

                    There is exactly one filter on an empty type.

                    Equations
                    Instances For
                      theorem Filter.NeBot.nonempty {α : Type u} (f : Filter α) [hf : f.NeBot] :
                      theorem Filter.eq_top_of_neBot {α : Type u} [Subsingleton α] (l : Filter α) [l.NeBot] :

                      There are only two filters on a Subsingleton: and . If the type is empty, then they are equal.

                      theorem Filter.forall_mem_nonempty_iff_neBot {α : Type u} {f : Filter α} :
                      Iff (∀ (s : Set α), Membership.mem f ss.Nonempty) f.NeBot
                      theorem Filter.eq_sInf_of_mem_iff_exists_mem {α : Type u} {S : Set (Filter α)} {l : Filter α} (h : ∀ {s : Set α}, Iff (Membership.mem l s) (Exists fun (f : Filter α) => And (Membership.mem S f) (Membership.mem f s))) :
                      theorem Filter.eq_iInf_of_mem_iff_exists_mem {α : Type u} {ι : Sort x} {f : ιFilter α} {l : Filter α} (h : ∀ {s : Set α}, Iff (Membership.mem l s) (Exists fun (i : ι) => Membership.mem (f i) s)) :
                      Eq l (iInf f)
                      theorem Filter.eq_biInf_of_mem_iff_exists_mem {α : Type u} {ι : Sort x} {f : ιFilter α} {p : ιProp} {l : Filter α} (h : ∀ {s : Set α}, Iff (Membership.mem l s) (Exists fun (i : ι) => And (p i) (Membership.mem (f i) s))) :
                      Eq l (iInf fun (i : ι) => iInf fun (x : p i) => f i)
                      theorem Filter.iInf_sets_eq {α : Type u} {ι : Sort x} {f : ιFilter α} (h : Directed (fun (x1 x2 : Filter α) => GE.ge x1 x2) f) [ne : Nonempty ι] :
                      Eq (iInf f).sets (Set.iUnion fun (i : ι) => (f i).sets)
                      theorem Filter.mem_iInf_of_directed {α : Type u} {ι : Sort x} {f : ιFilter α} (h : Directed (fun (x1 x2 : Filter α) => GE.ge x1 x2) f) [Nonempty ι] (s : Set α) :
                      Iff (Membership.mem (iInf f) s) (Exists fun (i : ι) => Membership.mem (f i) s)
                      theorem Filter.mem_biInf_of_directed {α : Type u} {β : Type v} {f : βFilter α} {s : Set β} (h : DirectedOn (Order.Preimage f fun (x1 x2 : Filter α) => GE.ge x1 x2) s) (ne : s.Nonempty) {t : Set α} :
                      Iff (Membership.mem (iInf fun (i : β) => iInf fun (h : Membership.mem s i) => f i) t) (Exists fun (i : β) => And (Membership.mem s i) (Membership.mem (f i) t))
                      theorem Filter.biInf_sets_eq {α : Type u} {β : Type v} {f : βFilter α} {s : Set β} (h : DirectedOn (Order.Preimage f fun (x1 x2 : Filter α) => GE.ge x1 x2) s) (ne : s.Nonempty) :
                      Eq (iInf fun (i : β) => iInf fun (h : Membership.mem s i) => f i).sets (Set.iUnion fun (i : β) => Set.iUnion fun (h : Membership.mem s i) => (f i).sets)
                      theorem Filter.sup_join {α : Type u} {f₁ f₂ : Filter (Filter α)} :
                      Eq (Max.max f₁.join f₂.join) (Max.max f₁ f₂).join
                      theorem Filter.iSup_join {α : Type u} {ι : Sort w} {f : ιFilter (Filter α)} :
                      Eq (iSup fun (x : ι) => (f x).join) (iSup fun (x : ι) => f x).join
                      Equations
                      Instances For
                        theorem Filter.iInf_neBot_of_directed' {α : Type u} {ι : Sort x} {f : ιFilter α} [Nonempty ι] (hd : Directed (fun (x1 x2 : Filter α) => GE.ge x1 x2) f) :
                        (∀ (i : ι), (f i).NeBot)(iInf f).NeBot

                        If f : ι → Filter α is directed, ι is not empty, and ∀ i, f i ≠ ⊥, then iInf f ≠ ⊥. See also iInf_neBot_of_directed for a version assuming Nonempty α instead of Nonempty ι.

                        theorem Filter.iInf_neBot_of_directed {α : Type u} {ι : Sort x} {f : ιFilter α} [hn : Nonempty α] (hd : Directed (fun (x1 x2 : Filter α) => GE.ge x1 x2) f) (hb : ∀ (i : ι), (f i).NeBot) :

                        If f : ι → Filter α is directed, α is not empty, and ∀ i, f i ≠ ⊥, then iInf f ≠ ⊥. See also iInf_neBot_of_directed' for a version assuming Nonempty ι instead of Nonempty α.

                        theorem Filter.sInf_neBot_of_directed' {α : Type u} {s : Set (Filter α)} (hne : s.Nonempty) (hd : DirectedOn (fun (x1 x2 : Filter α) => GE.ge x1 x2) s) (hbot : Not (Membership.mem s Bot.bot)) :
                        theorem Filter.sInf_neBot_of_directed {α : Type u} [Nonempty α] {s : Set (Filter α)} (hd : DirectedOn (fun (x1 x2 : Filter α) => GE.ge x1 x2) s) (hbot : Not (Membership.mem s Bot.bot)) :
                        theorem Filter.iInf_neBot_iff_of_directed' {α : Type u} {ι : Sort x} {f : ιFilter α} [Nonempty ι] (hd : Directed (fun (x1 x2 : Filter α) => GE.ge x1 x2) f) :
                        Iff (iInf f).NeBot (∀ (i : ι), (f i).NeBot)
                        theorem Filter.iInf_neBot_iff_of_directed {α : Type u} {ι : Sort x} {f : ιFilter α} [Nonempty α] (hd : Directed (fun (x1 x2 : Filter α) => GE.ge x1 x2) f) :
                        Iff (iInf f).NeBot (∀ (i : ι), (f i).NeBot)

                        principal equations #

                        theorem Filter.inf_principal {α : Type u} {s t : Set α} :
                        theorem Filter.sup_principal {α : Type u} {s t : Set α} :
                        theorem Filter.iSup_principal {α : Type u} {ι : Sort w} {s : ιSet α} :
                        Eq (iSup fun (x : ι) => principal (s x)) (principal (Set.iUnion fun (i : ι) => s i))

                        Alias of the reverse direction of Filter.principal_neBot_iff.

                        theorem Filter.mem_inf_principal {α : Type u} {f : Filter α} {s t : Set α} :
                        theorem Filter.iSup_inf_principal {α : Type u} {ι : Sort x} (f : ιFilter α) (s : Set α) :
                        Eq (iSup fun (i : ι) => Min.min (f i) (principal s)) (Min.min (iSup fun (i : ι) => f i) (principal s))
                        theorem Filter.mem_of_eq_bot {α : Type u} {f : Filter α} {s : Set α} (h : Eq (Min.min f (principal (HasCompl.compl s))) Bot.bot) :
                        theorem Filter.principal_le_iff {α : Type u} {s : Set α} {f : Filter α} :
                        Iff (LE.le (principal s) f) (∀ (V : Set α), Membership.mem f VHasSubset.Subset s V)
                        theorem Filter.join_mono {α : Type u} {f₁ f₂ : Filter (Filter α)} (h : LE.le f₁ f₂) :
                        LE.le f₁.join f₂.join

                        Eventually #

                        theorem Filter.eventually_iff {α : Type u} {f : Filter α} {P : αProp} :
                        Iff (Filter.Eventually (fun (x : α) => P x) f) (Membership.mem f (setOf fun (x : α) => P x))
                        theorem Filter.eventually_mem_set {α : Type u} {s : Set α} {l : Filter α} :
                        Iff (Filter.Eventually (fun (x : α) => Membership.mem s x) l) (Membership.mem l s)
                        theorem Filter.ext' {α : Type u} {f₁ f₂ : Filter α} (h : ∀ (p : αProp), Iff (Filter.Eventually (fun (x : α) => p x) f₁) (Filter.Eventually (fun (x : α) => p x) f₂)) :
                        Eq f₁ f₂
                        theorem Filter.Eventually.filter_mono {α : Type u} {f₁ f₂ : Filter α} (h : LE.le f₁ f₂) {p : αProp} (hp : Filter.Eventually (fun (x : α) => p x) f₂) :
                        Filter.Eventually (fun (x : α) => p x) f₁
                        theorem Filter.eventually_of_mem {α : Type u} {f : Filter α} {P : αProp} {U : Set α} (hU : Membership.mem f U) (h : ∀ (x : α), Membership.mem U xP x) :
                        Filter.Eventually (fun (x : α) => P x) f
                        theorem Filter.Eventually.and {α : Type u} {p q : αProp} {f : Filter α} :
                        Filter.Eventually p fFilter.Eventually q fFilter.Eventually (fun (x : α) => And (p x) (q x)) f
                        theorem Filter.eventually_true {α : Type u} (f : Filter α) :
                        Filter.Eventually (fun (x : α) => True) f
                        theorem Filter.Eventually.of_forall {α : Type u} {p : αProp} {f : Filter α} (hp : ∀ (x : α), p x) :
                        Filter.Eventually (fun (x : α) => p x) f
                        theorem Filter.eventually_false_iff_eq_bot {α : Type u} {f : Filter α} :
                        Iff (Filter.Eventually (fun (x : α) => False) f) (Eq f Bot.bot)
                        theorem Filter.eventually_const {α : Type u} {f : Filter α} [t : f.NeBot] {p : Prop} :
                        Iff (Filter.Eventually (fun (x : α) => p) f) p
                        theorem Filter.eventually_iff_exists_mem {α : Type u} {p : αProp} {f : Filter α} :
                        Iff (Filter.Eventually (fun (x : α) => p x) f) (Exists fun (v : Set α) => And (Membership.mem f v) (∀ (y : α), Membership.mem v yp y))
                        theorem Filter.Eventually.exists_mem {α : Type u} {p : αProp} {f : Filter α} (hp : Filter.Eventually (fun (x : α) => p x) f) :
                        Exists fun (v : Set α) => And (Membership.mem f v) (∀ (y : α), Membership.mem v yp y)
                        theorem Filter.Eventually.mp {α : Type u} {p q : αProp} {f : Filter α} (hp : Filter.Eventually (fun (x : α) => p x) f) (hq : Filter.Eventually (fun (x : α) => p xq x) f) :
                        Filter.Eventually (fun (x : α) => q x) f
                        theorem Filter.Eventually.mono {α : Type u} {p q : αProp} {f : Filter α} (hp : Filter.Eventually (fun (x : α) => p x) f) (hq : ∀ (x : α), p xq x) :
                        Filter.Eventually (fun (x : α) => q x) f
                        theorem Filter.forall_eventually_of_eventually_forall {α : Type u} {β : Type v} {f : Filter α} {p : αβProp} (h : Filter.Eventually (fun (x : α) => ∀ (y : β), p x y) f) (y : β) :
                        Filter.Eventually (fun (x : α) => p x y) f
                        theorem Filter.eventually_and {α : Type u} {p q : αProp} {f : Filter α} :
                        Iff (Filter.Eventually (fun (x : α) => And (p x) (q x)) f) (And (Filter.Eventually (fun (x : α) => p x) f) (Filter.Eventually (fun (x : α) => q x) f))
                        theorem Filter.Eventually.congr {α : Type u} {f : Filter α} {p q : αProp} (h' : Filter.Eventually (fun (x : α) => p x) f) (h : Filter.Eventually (fun (x : α) => Iff (p x) (q x)) f) :
                        Filter.Eventually (fun (x : α) => q x) f
                        theorem Filter.eventually_congr {α : Type u} {f : Filter α} {p q : αProp} (h : Filter.Eventually (fun (x : α) => Iff (p x) (q x)) f) :
                        Iff (Filter.Eventually (fun (x : α) => p x) f) (Filter.Eventually (fun (x : α) => q x) f)
                        theorem Filter.eventually_or_distrib_left {α : Type u} {f : Filter α} {p : Prop} {q : αProp} :
                        Iff (Filter.Eventually (fun (x : α) => Or p (q x)) f) (Or p (Filter.Eventually (fun (x : α) => q x) f))
                        theorem Filter.eventually_or_distrib_right {α : Type u} {f : Filter α} {p : αProp} {q : Prop} :
                        Iff (Filter.Eventually (fun (x : α) => Or (p x) q) f) (Or (Filter.Eventually (fun (x : α) => p x) f) q)
                        theorem Filter.eventually_imp_distrib_left {α : Type u} {f : Filter α} {p : Prop} {q : αProp} :
                        Iff (Filter.Eventually (fun (x : α) => pq x) f) (pFilter.Eventually (fun (x : α) => q x) f)
                        theorem Filter.eventually_bot {α : Type u} {p : αProp} :
                        Filter.Eventually (fun (x : α) => p x) Bot.bot
                        theorem Filter.eventually_top {α : Type u} {p : αProp} :
                        Iff (Filter.Eventually (fun (x : α) => p x) Top.top) (∀ (x : α), p x)
                        theorem Filter.eventually_sup {α : Type u} {p : αProp} {f g : Filter α} :
                        Iff (Filter.Eventually (fun (x : α) => p x) (Max.max f g)) (And (Filter.Eventually (fun (x : α) => p x) f) (Filter.Eventually (fun (x : α) => p x) g))
                        theorem Filter.eventually_sSup {α : Type u} {p : αProp} {fs : Set (Filter α)} :
                        Iff (Filter.Eventually (fun (x : α) => p x) (SupSet.sSup fs)) (∀ (f : Filter α), Membership.mem fs fFilter.Eventually (fun (x : α) => p x) f)
                        theorem Filter.eventually_iSup {α : Type u} {ι : Sort x} {p : αProp} {fs : ιFilter α} :
                        Iff (Filter.Eventually (fun (x : α) => p x) (iSup fun (b : ι) => fs b)) (∀ (b : ι), Filter.Eventually (fun (x : α) => p x) (fs b))
                        theorem Filter.eventually_principal {α : Type u} {a : Set α} {p : αProp} :
                        Iff (Filter.Eventually (fun (x : α) => p x) (principal a)) (∀ (x : α), Membership.mem a xp x)
                        theorem Filter.Eventually.forall_mem {α : Type u_2} {f : Filter α} {s : Set α} {P : αProp} (hP : Filter.Eventually (fun (x : α) => P x) f) (hf : LE.le (principal s) f) (x : α) :
                        Membership.mem s xP x
                        theorem Filter.eventually_inf {α : Type u} {f g : Filter α} {p : αProp} :
                        Iff (Filter.Eventually (fun (x : α) => p x) (Min.min f g)) (Exists fun (s : Set α) => And (Membership.mem f s) (Exists fun (t : Set α) => And (Membership.mem g t) (∀ (x : α), Membership.mem (Inter.inter s t) xp x)))
                        theorem Filter.eventually_inf_principal {α : Type u} {f : Filter α} {p : αProp} {s : Set α} :
                        Iff (Filter.Eventually (fun (x : α) => p x) (Min.min f (principal s))) (Filter.Eventually (fun (x : α) => Membership.mem s xp x) f)
                        theorem Filter.eventually_iff_all_subsets {α : Type u} {f : Filter α} {p : αProp} :
                        Iff (Filter.Eventually (fun (x : α) => p x) f) (∀ (s : Set α), Filter.Eventually (fun (x : α) => Membership.mem s xp x) f)

                        Frequently #

                        theorem Filter.Eventually.frequently {α : Type u} {f : Filter α} [f.NeBot] {p : αProp} (h : Filter.Eventually (fun (x : α) => p x) f) :
                        Filter.Frequently (fun (x : α) => p x) f
                        theorem Filter.Frequently.of_forall {α : Type u} {f : Filter α} [f.NeBot] {p : αProp} (h : ∀ (x : α), p x) :
                        Filter.Frequently (fun (x : α) => p x) f
                        theorem Filter.Frequently.mp {α : Type u} {p q : αProp} {f : Filter α} (h : Filter.Frequently (fun (x : α) => p x) f) (hpq : Filter.Eventually (fun (x : α) => p xq x) f) :
                        Filter.Frequently (fun (x : α) => q x) f
                        theorem Filter.frequently_congr {α : Type u} {p q : αProp} {f : Filter α} (h : Filter.Eventually (fun (x : α) => Iff (p x) (q x)) f) :
                        Iff (Filter.Frequently (fun (x : α) => p x) f) (Filter.Frequently (fun (x : α) => q x) f)
                        theorem Filter.Frequently.filter_mono {α : Type u} {p : αProp} {f g : Filter α} (h : Filter.Frequently (fun (x : α) => p x) f) (hle : LE.le f g) :
                        Filter.Frequently (fun (x : α) => p x) g
                        theorem Filter.Frequently.mono {α : Type u} {p q : αProp} {f : Filter α} (h : Filter.Frequently (fun (x : α) => p x) f) (hpq : ∀ (x : α), p xq x) :
                        Filter.Frequently (fun (x : α) => q x) f
                        theorem Filter.Frequently.and_eventually {α : Type u} {p q : αProp} {f : Filter α} (hp : Filter.Frequently (fun (x : α) => p x) f) (hq : Filter.Eventually (fun (x : α) => q x) f) :
                        Filter.Frequently (fun (x : α) => And (p x) (q x)) f
                        theorem Filter.Eventually.and_frequently {α : Type u} {p q : αProp} {f : Filter α} (hp : Filter.Eventually (fun (x : α) => p x) f) (hq : Filter.Frequently (fun (x : α) => q x) f) :
                        Filter.Frequently (fun (x : α) => And (p x) (q x)) f
                        theorem Filter.Frequently.exists {α : Type u} {p : αProp} {f : Filter α} (hp : Filter.Frequently (fun (x : α) => p x) f) :
                        Exists fun (x : α) => p x
                        theorem Filter.Eventually.exists {α : Type u} {p : αProp} {f : Filter α} [f.NeBot] (hp : Filter.Eventually (fun (x : α) => p x) f) :
                        Exists fun (x : α) => p x
                        theorem Filter.frequently_iff_neBot {α : Type u} {l : Filter α} {p : αProp} :
                        Iff (Filter.Frequently (fun (x : α) => p x) l) (Min.min l (principal (setOf fun (x : α) => p x))).NeBot
                        theorem Filter.frequently_mem_iff_neBot {α : Type u} {l : Filter α} {s : Set α} :
                        Iff (Filter.Frequently (fun (x : α) => Membership.mem s x) l) (Min.min l (principal s)).NeBot
                        theorem Filter.frequently_iff_forall_eventually_exists_and {α : Type u} {p : αProp} {f : Filter α} :
                        Iff (Filter.Frequently (fun (x : α) => p x) f) (∀ {q : αProp}, Filter.Eventually (fun (x : α) => q x) fExists fun (x : α) => And (p x) (q x))
                        theorem Filter.frequently_iff {α : Type u} {f : Filter α} {P : αProp} :
                        Iff (Filter.Frequently (fun (x : α) => P x) f) (∀ {U : Set α}, Membership.mem f UExists fun (x : α) => And (Membership.mem U x) (P x))
                        theorem Filter.not_eventually {α : Type u} {p : αProp} {f : Filter α} :
                        Iff (Not (Filter.Eventually (fun (x : α) => p x) f)) (Filter.Frequently (fun (x : α) => Not (p x)) f)
                        theorem Filter.not_frequently {α : Type u} {p : αProp} {f : Filter α} :
                        Iff (Not (Filter.Frequently (fun (x : α) => p x) f)) (Filter.Eventually (fun (x : α) => Not (p x)) f)
                        theorem Filter.frequently_true_iff_neBot {α : Type u} (f : Filter α) :
                        Iff (Filter.Frequently (fun (x : α) => True) f) f.NeBot
                        theorem Filter.frequently_false {α : Type u} (f : Filter α) :
                        Not (Filter.Frequently (fun (x : α) => False) f)
                        theorem Filter.frequently_const {α : Type u} {f : Filter α} [f.NeBot] {p : Prop} :
                        Iff (Filter.Frequently (fun (x : α) => p) f) p
                        theorem Filter.frequently_or_distrib {α : Type u} {f : Filter α} {p q : αProp} :
                        Iff (Filter.Frequently (fun (x : α) => Or (p x) (q x)) f) (Or (Filter.Frequently (fun (x : α) => p x) f) (Filter.Frequently (fun (x : α) => q x) f))
                        theorem Filter.frequently_or_distrib_left {α : Type u} {f : Filter α} [f.NeBot] {p : Prop} {q : αProp} :
                        Iff (Filter.Frequently (fun (x : α) => Or p (q x)) f) (Or p (Filter.Frequently (fun (x : α) => q x) f))
                        theorem Filter.frequently_or_distrib_right {α : Type u} {f : Filter α} [f.NeBot] {p : αProp} {q : Prop} :
                        Iff (Filter.Frequently (fun (x : α) => Or (p x) q) f) (Or (Filter.Frequently (fun (x : α) => p x) f) q)
                        theorem Filter.frequently_imp_distrib {α : Type u} {f : Filter α} {p q : αProp} :
                        Iff (Filter.Frequently (fun (x : α) => p xq x) f) (Filter.Eventually (fun (x : α) => p x) fFilter.Frequently (fun (x : α) => q x) f)
                        theorem Filter.frequently_imp_distrib_left {α : Type u} {f : Filter α} [f.NeBot] {p : Prop} {q : αProp} :
                        Iff (Filter.Frequently (fun (x : α) => pq x) f) (pFilter.Frequently (fun (x : α) => q x) f)
                        theorem Filter.frequently_imp_distrib_right {α : Type u} {f : Filter α} [f.NeBot] {p : αProp} {q : Prop} :
                        Iff (Filter.Frequently (fun (x : α) => p xq) f) (Filter.Eventually (fun (x : α) => p x) fq)
                        theorem Filter.eventually_imp_distrib_right {α : Type u} {f : Filter α} {p : αProp} {q : Prop} :
                        Iff (Filter.Eventually (fun (x : α) => p xq) f) (Filter.Frequently (fun (x : α) => p x) fq)
                        theorem Filter.frequently_and_distrib_left {α : Type u} {f : Filter α} {p : Prop} {q : αProp} :
                        Iff (Filter.Frequently (fun (x : α) => And p (q x)) f) (And p (Filter.Frequently (fun (x : α) => q x) f))
                        theorem Filter.frequently_and_distrib_right {α : Type u} {f : Filter α} {p : αProp} {q : Prop} :
                        Iff (Filter.Frequently (fun (x : α) => And (p x) q) f) (And (Filter.Frequently (fun (x : α) => p x) f) q)
                        theorem Filter.frequently_bot {α : Type u} {p : αProp} :
                        Not (Filter.Frequently (fun (x : α) => p x) Bot.bot)
                        theorem Filter.frequently_top {α : Type u} {p : αProp} :
                        Iff (Filter.Frequently (fun (x : α) => p x) Top.top) (Exists fun (x : α) => p x)
                        theorem Filter.frequently_principal {α : Type u} {a : Set α} {p : αProp} :
                        Iff (Filter.Frequently (fun (x : α) => p x) (principal a)) (Exists fun (x : α) => And (Membership.mem a x) (p x))
                        theorem Filter.frequently_inf_principal {α : Type u} {f : Filter α} {s : Set α} {p : αProp} :
                        Iff (Filter.Frequently (fun (x : α) => p x) (Min.min f (principal s))) (Filter.Frequently (fun (x : α) => And (Membership.mem s x) (p x)) f)
                        theorem Filter.Frequently.of_inf_principal {α : Type u} {f : Filter α} {s : Set α} {p : αProp} :
                        Filter.Frequently (fun (x : α) => p x) (Min.min f (principal s))Filter.Frequently (fun (x : α) => And (Membership.mem s x) (p x)) f

                        Alias of the forward direction of Filter.frequently_inf_principal.

                        theorem Filter.Frequently.inf_principal {α : Type u} {f : Filter α} {s : Set α} {p : αProp} :
                        Filter.Frequently (fun (x : α) => And (Membership.mem s x) (p x)) fFilter.Frequently (fun (x : α) => p x) (Min.min f (principal s))

                        Alias of the reverse direction of Filter.frequently_inf_principal.

                        theorem Filter.frequently_sup {α : Type u} {p : αProp} {f g : Filter α} :
                        Iff (Filter.Frequently (fun (x : α) => p x) (Max.max f g)) (Or (Filter.Frequently (fun (x : α) => p x) f) (Filter.Frequently (fun (x : α) => p x) g))
                        theorem Filter.frequently_sSup {α : Type u} {p : αProp} {fs : Set (Filter α)} :
                        Iff (Filter.Frequently (fun (x : α) => p x) (SupSet.sSup fs)) (Exists fun (f : Filter α) => And (Membership.mem fs f) (Filter.Frequently (fun (x : α) => p x) f))
                        theorem Filter.frequently_iSup {α : Type u} {β : Type v} {p : αProp} {fs : βFilter α} :
                        Iff (Filter.Frequently (fun (x : α) => p x) (iSup fun (b : β) => fs b)) (Exists fun (b : β) => Filter.Frequently (fun (x : α) => p x) (fs b))
                        theorem Filter.Eventually.choice {α : Type u} {β : Type v} {r : αβProp} {l : Filter α} [l.NeBot] (h : Filter.Eventually (fun (x : α) => Exists fun (y : β) => r x y) l) :
                        Exists fun (f : αβ) => Filter.Eventually (fun (x : α) => r x (f x)) l
                        theorem Filter.skolem {ι : Type u_2} {α : ιType u_3} [∀ (i : ι), Nonempty (α i)] {P : (i : ι) → α iProp} {F : Filter ι} :
                        Iff (Filter.Eventually (fun (i : ι) => Exists fun (b : α i) => P i b) F) (Exists fun (b : (i : ι) → α i) => Filter.Eventually (fun (i : ι) => P i (b i)) F)

                        Relation “eventually equal” #

                        theorem Filter.EventuallyEq.eventually {α : Type u} {β : Type v} {l : Filter α} {f g : αβ} (h : l.EventuallyEq f g) :
                        Filter.Eventually (fun (x : α) => Eq (f x) (g x)) l
                        theorem Filter.eventuallyEq_top {α : Type u} {β : Type v} {f g : αβ} :
                        theorem Filter.EventuallyEq.rw {α : Type u} {β : Type v} {l : Filter α} {f g : αβ} (h : l.EventuallyEq f g) (p : αβProp) (hf : Filter.Eventually (fun (x : α) => p x (f x)) l) :
                        Filter.Eventually (fun (x : α) => p x (g x)) l
                        theorem Filter.eventuallyEq_set {α : Type u} {s t : Set α} {l : Filter α} :
                        Iff (l.EventuallyEq s t) (Filter.Eventually (fun (x : α) => Iff (Membership.mem s x) (Membership.mem t x)) l)
                        theorem Filter.EventuallyEq.mem_iff {α : Type u} {s t : Set α} {l : Filter α} :
                        l.EventuallyEq s tFilter.Eventually (fun (x : α) => Iff (Membership.mem s x) (Membership.mem t x)) l

                        Alias of the forward direction of Filter.eventuallyEq_set.

                        theorem Filter.Eventually.set_eq {α : Type u} {s t : Set α} {l : Filter α} :
                        Filter.Eventually (fun (x : α) => Iff (Membership.mem s x) (Membership.mem t x)) ll.EventuallyEq s t

                        Alias of the reverse direction of Filter.eventuallyEq_set.

                        theorem Filter.eventuallyEq_univ {α : Type u} {s : Set α} {l : Filter α} :
                        theorem Filter.EventuallyEq.exists_mem {α : Type u} {β : Type v} {l : Filter α} {f g : αβ} (h : l.EventuallyEq f g) :
                        Exists fun (s : Set α) => And (Membership.mem l s) (Set.EqOn f g s)
                        theorem Filter.eventuallyEq_of_mem {α : Type u} {β : Type v} {l : Filter α} {f g : αβ} {s : Set α} (hs : Membership.mem l s) (h : Set.EqOn f g s) :
                        theorem Filter.eventuallyEq_iff_exists_mem {α : Type u} {β : Type v} {l : Filter α} {f g : αβ} :
                        Iff (l.EventuallyEq f g) (Exists fun (s : Set α) => And (Membership.mem l s) (Set.EqOn f g s))
                        theorem Filter.EventuallyEq.filter_mono {α : Type u} {β : Type v} {l l' : Filter α} {f g : αβ} (h₁ : l.EventuallyEq f g) (h₂ : LE.le l' l) :
                        theorem Filter.EventuallyEq.refl {α : Type u} {β : Type v} (l : Filter α) (f : αβ) :
                        theorem Filter.EventuallyEq.rfl {α : Type u} {β : Type v} {l : Filter α} {f : αβ} :
                        theorem Filter.EventuallyEq.of_eq {α : Type u} {β : Type v} {l : Filter α} {f g : αβ} (h : Eq f g) :
                        theorem Eq.eventuallyEq {α : Type u} {β : Type v} {l : Filter α} {f g : αβ} (h : Eq f g) :

                        Alias of Filter.EventuallyEq.of_eq.

                        theorem Filter.EventuallyEq.symm {α : Type u} {β : Type v} {f g : αβ} {l : Filter α} (H : l.EventuallyEq f g) :
                        theorem Filter.eventuallyEq_comm {α : Type u} {β : Type v} {f g : αβ} {l : Filter α} :
                        Iff (l.EventuallyEq f g) (l.EventuallyEq g f)
                        theorem Filter.EventuallyEq.trans {α : Type u} {β : Type v} {l : Filter α} {f g h : αβ} (H₁ : l.EventuallyEq f g) (H₂ : l.EventuallyEq g h) :
                        theorem Filter.EventuallyEq.congr_left {α : Type u} {β : Type v} {l : Filter α} {f g h : αβ} (H : l.EventuallyEq f g) :
                        Iff (l.EventuallyEq f h) (l.EventuallyEq g h)
                        theorem Filter.EventuallyEq.congr_right {α : Type u} {β : Type v} {l : Filter α} {f g h : αβ} (H : l.EventuallyEq g h) :
                        Iff (l.EventuallyEq f g) (l.EventuallyEq f h)
                        def Filter.instTransForallEventuallyEq {α : Type u} {β : Type v} {l : Filter α} :
                        Trans (fun (x1 x2 : αβ) => l.EventuallyEq x1 x2) (fun (x1 x2 : αβ) => l.EventuallyEq x1 x2) fun (x1 x2 : αβ) => l.EventuallyEq x1 x2
                        Equations
                        Instances For
                          theorem Filter.EventuallyEq.prodMk {α : Type u} {β : Type v} {γ : Type w} {l : Filter α} {f f' : αβ} (hf : l.EventuallyEq f f') {g g' : αγ} (hg : l.EventuallyEq g g') :
                          l.EventuallyEq (fun (x : α) => { fst := f x, snd := g x }) fun (x : α) => { fst := f' x, snd := g' x }
                          @[deprecated Filter.EventuallyEq.prodMk (since := "2025-03-10")]
                          theorem Filter.EventuallyEq.prod_mk {α : Type u} {β : Type v} {γ : Type w} {l : Filter α} {f f' : αβ} (hf : l.EventuallyEq f f') {g g' : αγ} (hg : l.EventuallyEq g g') :
                          l.EventuallyEq (fun (x : α) => { fst := f x, snd := g x }) fun (x : α) => { fst := f' x, snd := g' x }

                          Alias of Filter.EventuallyEq.prodMk.

                          theorem Filter.EventuallyEq.fun_comp {α : Type u} {β : Type v} {γ : Type w} {f g : αβ} {l : Filter α} (H : l.EventuallyEq f g) (h : βγ) :
                          theorem Filter.EventuallyEq.comp₂ {α : Type u} {β : Type v} {γ : Type w} {δ : Type u_2} {f f' : αβ} {g g' : αγ} {l : Filter α} (Hf : l.EventuallyEq f f') (h : βγδ) (Hg : l.EventuallyEq g g') :
                          l.EventuallyEq (fun (x : α) => h (f x) (g x)) fun (x : α) => h (f' x) (g' x)
                          theorem Filter.EventuallyEq.mul {α : Type u} {β : Type v} [Mul β] {f f' g g' : αβ} {l : Filter α} (h : l.EventuallyEq f g) (h' : l.EventuallyEq f' g') :
                          l.EventuallyEq (fun (x : α) => HMul.hMul (f x) (f' x)) fun (x : α) => HMul.hMul (g x) (g' x)
                          theorem Filter.EventuallyEq.add {α : Type u} {β : Type v} [Add β] {f f' g g' : αβ} {l : Filter α} (h : l.EventuallyEq f g) (h' : l.EventuallyEq f' g') :
                          l.EventuallyEq (fun (x : α) => HAdd.hAdd (f x) (f' x)) fun (x : α) => HAdd.hAdd (g x) (g' x)
                          theorem Filter.EventuallyEq.pow_const {α : Type u} {β : Type v} {γ : Type u_2} [Pow β γ] {f g : αβ} {l : Filter α} (h : l.EventuallyEq f g) (c : γ) :
                          l.EventuallyEq (fun (x : α) => HPow.hPow (f x) c) fun (x : α) => HPow.hPow (g x) c
                          theorem Filter.EventuallyEq.const_smul {α : Type u} {β : Type v} {γ : Type u_2} [SMul γ β] {f g : αβ} {l : Filter α} (h : l.EventuallyEq f g) (c : γ) :
                          l.EventuallyEq (fun (x : α) => HSMul.hSMul c (f x)) fun (x : α) => HSMul.hSMul c (g x)
                          theorem Filter.EventuallyEq.inv {α : Type u} {β : Type v} [Inv β] {f g : αβ} {l : Filter α} (h : l.EventuallyEq f g) :
                          l.EventuallyEq (fun (x : α) => Inv.inv (f x)) fun (x : α) => Inv.inv (g x)
                          theorem Filter.EventuallyEq.neg {α : Type u} {β : Type v} [Neg β] {f g : αβ} {l : Filter α} (h : l.EventuallyEq f g) :
                          l.EventuallyEq (fun (x : α) => Neg.neg (f x)) fun (x : α) => Neg.neg (g x)
                          theorem Filter.EventuallyEq.div {α : Type u} {β : Type v} [Div β] {f f' g g' : αβ} {l : Filter α} (h : l.EventuallyEq f g) (h' : l.EventuallyEq f' g') :
                          l.EventuallyEq (fun (x : α) => HDiv.hDiv (f x) (f' x)) fun (x : α) => HDiv.hDiv (g x) (g' x)
                          theorem Filter.EventuallyEq.sub {α : Type u} {β : Type v} [Sub β] {f f' g g' : αβ} {l : Filter α} (h : l.EventuallyEq f g) (h' : l.EventuallyEq f' g') :
                          l.EventuallyEq (fun (x : α) => HSub.hSub (f x) (f' x)) fun (x : α) => HSub.hSub (g x) (g' x)
                          theorem Filter.EventuallyEq.const_vadd {α : Type u} {β : Type v} {γ : Type u_2} [VAdd γ β] {f g : αβ} {l : Filter α} (h : l.EventuallyEq f g) (c : γ) :
                          l.EventuallyEq (fun (x : α) => HVAdd.hVAdd c (f x)) fun (x : α) => HVAdd.hVAdd c (g x)
                          theorem Filter.EventuallyEq.smul {α : Type u} {β : Type v} {𝕜 : Type u_2} [SMul 𝕜 β] {l : Filter α} {f f' : α𝕜} {g g' : αβ} (hf : l.EventuallyEq f f') (hg : l.EventuallyEq g g') :
                          l.EventuallyEq (fun (x : α) => HSMul.hSMul (f x) (g x)) fun (x : α) => HSMul.hSMul (f' x) (g' x)
                          theorem Filter.EventuallyEq.vadd {α : Type u} {β : Type v} {𝕜 : Type u_2} [VAdd 𝕜 β] {l : Filter α} {f f' : α𝕜} {g g' : αβ} (hf : l.EventuallyEq f f') (hg : l.EventuallyEq g g') :
                          l.EventuallyEq (fun (x : α) => HVAdd.hVAdd (f x) (g x)) fun (x : α) => HVAdd.hVAdd (f' x) (g' x)
                          theorem Filter.EventuallyEq.sup {α : Type u} {β : Type v} [Max β] {l : Filter α} {f f' g g' : αβ} (hf : l.EventuallyEq f f') (hg : l.EventuallyEq g g') :
                          l.EventuallyEq (fun (x : α) => Max.max (f x) (g x)) fun (x : α) => Max.max (f' x) (g' x)
                          theorem Filter.EventuallyEq.inf {α : Type u} {β : Type v} [Min β] {l : Filter α} {f f' g g' : αβ} (hf : l.EventuallyEq f f') (hg : l.EventuallyEq g g') :
                          l.EventuallyEq (fun (x : α) => Min.min (f x) (g x)) fun (x : α) => Min.min (f' x) (g' x)
                          theorem Filter.EventuallyEq.preimage {α : Type u} {β : Type v} {l : Filter α} {f g : αβ} (h : l.EventuallyEq f g) (s : Set β) :
                          theorem Filter.EventuallyEq.inter {α : Type u} {s t s' t' : Set α} {l : Filter α} (h : l.EventuallyEq s t) (h' : l.EventuallyEq s' t') :
                          theorem Filter.EventuallyEq.union {α : Type u} {s t s' t' : Set α} {l : Filter α} (h : l.EventuallyEq s t) (h' : l.EventuallyEq s' t') :
                          theorem Filter.EventuallyEq.compl {α : Type u} {s t : Set α} {l : Filter α} (h : l.EventuallyEq s t) :
                          theorem Filter.EventuallyEq.diff {α : Type u} {s t s' t' : Set α} {l : Filter α} (h : l.EventuallyEq s t) (h' : l.EventuallyEq s' t') :
                          theorem Filter.EventuallyEq.symmDiff {α : Type u} {s t s' t' : Set α} {l : Filter α} (h : l.EventuallyEq s t) (h' : l.EventuallyEq s' t') :
                          theorem Filter.inter_eventuallyEq_left {α : Type u} {s t : Set α} {l : Filter α} :
                          Iff (l.EventuallyEq (Inter.inter s t) s) (Filter.Eventually (fun (x : α) => Membership.mem s xMembership.mem t x) l)
                          theorem Filter.inter_eventuallyEq_right {α : Type u} {s t : Set α} {l : Filter α} :
                          Iff (l.EventuallyEq (Inter.inter s t) t) (Filter.Eventually (fun (x : α) => Membership.mem t xMembership.mem s x) l)
                          theorem Filter.eventuallyEq_principal {α : Type u} {β : Type v} {s : Set α} {f g : αβ} :
                          theorem Filter.eventuallyEq_inf_principal_iff {α : Type u} {β : Type v} {F : Filter α} {s : Set α} {f g : αβ} :
                          Iff ((Min.min F (principal s)).EventuallyEq f g) (Filter.Eventually (fun (x : α) => Membership.mem s xEq (f x) (g x)) F)
                          theorem Filter.EventuallyEq.sub_eq {α : Type u} {β : Type v} [AddGroup β] {f g : αβ} {l : Filter α} (h : l.EventuallyEq f g) :
                          theorem Filter.eventuallyEq_iff_sub {α : Type u} {β : Type v} [AddGroup β] {f g : αβ} {l : Filter α} :
                          theorem Filter.eventuallyEq_iff_all_subsets {α : Type u} {β : Type v} {f g : αβ} {l : Filter α} :
                          Iff (l.EventuallyEq f g) (∀ (s : Set α), Filter.Eventually (fun (x : α) => Membership.mem s xEq (f x) (g x)) l)
                          theorem Filter.EventuallyLE.congr {α : Type u} {β : Type v} [LE β] {l : Filter α} {f f' g g' : αβ} (H : l.EventuallyLE f g) (hf : l.EventuallyEq f f') (hg : l.EventuallyEq g g') :
                          l.EventuallyLE f' g'
                          theorem Filter.eventuallyLE_congr {α : Type u} {β : Type v} [LE β] {l : Filter α} {f f' g g' : αβ} (hf : l.EventuallyEq f f') (hg : l.EventuallyEq g g') :
                          Iff (l.EventuallyLE f g) (l.EventuallyLE f' g')
                          theorem Filter.eventuallyLE_iff_all_subsets {α : Type u} {β : Type v} [LE β] {f g : αβ} {l : Filter α} :
                          Iff (l.EventuallyLE f g) (∀ (s : Set α), Filter.Eventually (fun (x : α) => Membership.mem s xLE.le (f x) (g x)) l)
                          theorem Filter.EventuallyEq.le {α : Type u} {β : Type v} [Preorder β] {l : Filter α} {f g : αβ} (h : l.EventuallyEq f g) :
                          theorem Filter.EventuallyLE.refl {α : Type u} {β : Type v} [Preorder β] (l : Filter α) (f : αβ) :
                          theorem Filter.EventuallyLE.rfl {α : Type u} {β : Type v} [Preorder β] {l : Filter α} {f : αβ} :
                          theorem Filter.EventuallyLE.trans {α : Type u} {β : Type v} [Preorder β] {l : Filter α} {f g h : αβ} (H₁ : l.EventuallyLE f g) (H₂ : l.EventuallyLE g h) :
                          def Filter.instTransForallEventuallyLE {α : Type u} {β : Type v} [Preorder β] {l : Filter α} :
                          Trans (fun (x1 x2 : αβ) => l.EventuallyLE x1 x2) (fun (x1 x2 : αβ) => l.EventuallyLE x1 x2) fun (x1 x2 : αβ) => l.EventuallyLE x1 x2
                          Equations
                          Instances For
                            theorem Filter.EventuallyEq.trans_le {α : Type u} {β : Type v} [Preorder β] {l : Filter α} {f g h : αβ} (H₁ : l.EventuallyEq f g) (H₂ : l.EventuallyLE g h) :
                            def Filter.instTransForallEventuallyEqEventuallyLE {α : Type u} {β : Type v} [Preorder β] {l : Filter α} :
                            Trans (fun (x1 x2 : αβ) => l.EventuallyEq x1 x2) (fun (x1 x2 : αβ) => l.EventuallyLE x1 x2) fun (x1 x2 : αβ) => l.EventuallyLE x1 x2
                            Equations
                            Instances For
                              theorem Filter.EventuallyLE.trans_eq {α : Type u} {β : Type v} [Preorder β] {l : Filter α} {f g h : αβ} (H₁ : l.EventuallyLE f g) (H₂ : l.EventuallyEq g h) :
                              def Filter.instTransForallEventuallyLEEventuallyEq {α : Type u} {β : Type v} [Preorder β] {l : Filter α} :
                              Trans (fun (x1 x2 : αβ) => l.EventuallyLE x1 x2) (fun (x1 x2 : αβ) => l.EventuallyEq x1 x2) fun (x1 x2 : αβ) => l.EventuallyLE x1 x2
                              Equations
                              Instances For
                                theorem Filter.EventuallyLE.antisymm {α : Type u} {β : Type v} [PartialOrder β] {l : Filter α} {f g : αβ} (h₁ : l.EventuallyLE f g) (h₂ : l.EventuallyLE g f) :
                                theorem Filter.eventuallyLE_antisymm_iff {α : Type u} {β : Type v} [PartialOrder β] {l : Filter α} {f g : αβ} :
                                Iff (l.EventuallyEq f g) (And (l.EventuallyLE f g) (l.EventuallyLE g f))
                                theorem Filter.EventuallyLE.le_iff_eq {α : Type u} {β : Type v} [PartialOrder β] {l : Filter α} {f g : αβ} (h : l.EventuallyLE f g) :
                                Iff (l.EventuallyLE g f) (l.EventuallyEq g f)
                                theorem Filter.Eventually.ne_of_lt {α : Type u} {β : Type v} [Preorder β] {l : Filter α} {f g : αβ} (h : Filter.Eventually (fun (x : α) => LT.lt (f x) (g x)) l) :
                                Filter.Eventually (fun (x : α) => Ne (f x) (g x)) l
                                theorem Filter.Eventually.ne_top_of_lt {α : Type u} {β : Type v} [Preorder β] [OrderTop β] {l : Filter α} {f g : αβ} (h : Filter.Eventually (fun (x : α) => LT.lt (f x) (g x)) l) :
                                Filter.Eventually (fun (x : α) => Ne (f x) Top.top) l
                                theorem Filter.Eventually.lt_top_of_ne {α : Type u} {β : Type v} [PartialOrder β] [OrderTop β] {l : Filter α} {f : αβ} (h : Filter.Eventually (fun (x : α) => Ne (f x) Top.top) l) :
                                Filter.Eventually (fun (x : α) => LT.lt (f x) Top.top) l
                                theorem Filter.Eventually.lt_top_iff_ne_top {α : Type u} {β : Type v} [PartialOrder β] [OrderTop β] {l : Filter α} {f : αβ} :
                                Iff (Filter.Eventually (fun (x : α) => LT.lt (f x) Top.top) l) (Filter.Eventually (fun (x : α) => Ne (f x) Top.top) l)
                                theorem Filter.EventuallyLE.inter {α : Type u} {s t s' t' : Set α} {l : Filter α} (h : l.EventuallyLE s t) (h' : l.EventuallyLE s' t') :
                                theorem Filter.EventuallyLE.union {α : Type u} {s t s' t' : Set α} {l : Filter α} (h : l.EventuallyLE s t) (h' : l.EventuallyLE s' t') :
                                theorem Filter.EventuallyLE.compl {α : Type u} {s t : Set α} {l : Filter α} (h : l.EventuallyLE s t) :
                                theorem Filter.EventuallyLE.diff {α : Type u} {s t s' t' : Set α} {l : Filter α} (h : l.EventuallyLE s t) (h' : l.EventuallyLE t' s') :
                                theorem Filter.set_eventuallyEq_iff_inf_principal {α : Type u} {s t : Set α} {l : Filter α} :
                                theorem Filter.EventuallyLE.sup {α : Type u} {β : Type v} [SemilatticeSup β] {l : Filter α} {f₁ f₂ g₁ g₂ : αβ} (hf : l.EventuallyLE f₁ f₂) (hg : l.EventuallyLE g₁ g₂) :
                                l.EventuallyLE (Max.max f₁ g₁) (Max.max f₂ g₂)
                                theorem Filter.EventuallyLE.sup_le {α : Type u} {β : Type v} [SemilatticeSup β] {l : Filter α} {f g h : αβ} (hf : l.EventuallyLE f h) (hg : l.EventuallyLE g h) :
                                theorem Filter.EventuallyLE.le_sup_of_le_left {α : Type u} {β : Type v} [SemilatticeSup β] {l : Filter α} {f g h : αβ} (hf : l.EventuallyLE h f) :
                                theorem Filter.EventuallyLE.le_sup_of_le_right {α : Type u} {β : Type v} [SemilatticeSup β] {l : Filter α} {f g h : αβ} (hg : l.EventuallyLE h g) :
                                theorem Filter.join_le {α : Type u} {f : Filter (Filter α)} {l : Filter α} (h : Filter.Eventually (fun (m : Filter α) => LE.le m l) f) :
                                theorem Set.EqOn.eventuallyEq {α : Type u_1} {β : Type u_2} {s : Set α} {f g : αβ} (h : EqOn f g s) :
                                theorem Set.EqOn.eventuallyEq_of_mem {α : Type u_1} {β : Type u_2} {s : Set α} {l : Filter α} {f g : αβ} (h : EqOn f g s) (hl : Membership.mem l s) :
                                theorem HasSubset.Subset.eventuallyLE {α : Type u_1} {l : Filter α} {s t : Set α} (h : Subset s t) :
                                theorem Filter.compl_mem_comk {α : Type u_1} {p : Set αProp} {he : p EmptyCollection.emptyCollection} {hmono : ∀ (t : Set α), p t∀ (s : Set α), HasSubset.Subset s tp s} {hunion : ∀ (s : Set α), p s∀ (t : Set α), p tp (Union.union s t)} {s : Set α} :
                                Iff (Membership.mem (comk p he hmono hunion) (HasCompl.compl s)) (p s)