Documentation

Mathlib.Order.Filter.Basic

Theory of filters on sets #

A filter on a type α is a collection of sets of α which contains the whole α, is upwards-closed, and is stable under intersection. They are mostly used to abstract two related kinds of ideas:

Main definitions #

In this file, we endow Filter α it with a complete lattice structure. This structure is lifted from the lattice structure on Set (Set X) using the Galois insertion which maps a filter to its elements in one direction, and an arbitrary set of sets to the smallest filter containing it in the other direction. We also prove Filter is a monadic functor, with a push-forward operation Filter.map and a pull-back operation Filter.comap that form a Galois connections for the order on filters.

The examples of filters appearing in the description of the two motivating ideas are:

The predicate "happening eventually" is Filter.Eventually, and "happening often" is Filter.Frequently, whose definitions are immediate after Filter is defined (but they come rather late in this file in order to immediately relate them to the lattice structure).

Notations #

References #

Important note: Bourbaki requires that a filter on X cannot contain all sets of X, which we do not require. This gives Filter X better formal properties, in particular a bottom element for its lattice structure, at the cost of including the assumption [NeBot f] in a number of lemmas and definitions.

instance Filter.inhabitedMem {α : Type u} {f : Filter α} :
Inhabited { s : Set α // s f }
Equations
theorem Filter.filter_eq_iff {α : Type u} {f g : Filter α} :
f = g f.sets = g.sets
@[simp]
theorem Filter.sets_subset_sets {α : Type u} {f g : Filter α} :
f.sets g.sets g f
@[simp]
theorem Filter.sets_ssubset_sets {α : Type u} {f g : Filter α} :
f.sets g.sets g < f
theorem Filter.coext {α : Type u} {f g : Filter α} (h : ∀ (s : Set α), s f s g) :
f = g

An extensionality lemma that is useful for filters with good lemmas about sᶜ ∈ f (e.g., Filter.comap, Filter.coprod, Filter.Coprod, Filter.cofinite).

instance Filter.instTransSetSupersetMem {α : Type u} :
Trans (fun (x1 x2 : Set α) => x1 x2) (fun (x1 : Set α) (x2 : Filter α) => x1 x2) fun (x1 : Set α) (x2 : Filter α) => x1 x2
Equations
instance Filter.instTransSetMemSubset {α : Type u} :
Trans Membership.mem (fun (x1 x2 : Set α) => x1 x2) Membership.mem
Equations
@[simp]
theorem Filter.inter_mem_iff {α : Type u} {f : Filter α} {s t : Set α} :
s t f s f t f
theorem Filter.diff_mem {α : Type u} {f : Filter α} {s t : Set α} (hs : s f) (ht : t f) :
s \ t f
theorem Filter.congr_sets {α : Type u} {f : Filter α} {s t : Set α} (h : {x : α | x s x t} f) :
s f t f
theorem Filter.copy_eq {α : Type u} {f : Filter α} {S : Set (Set α)} (hmem : ∀ (s : Set α), s S s f) :
f.copy S hmem = f
theorem Filter.biInter_mem' {α : Type u} {f : Filter α} {β : Type v} {s : βSet α} {is : Set β} (hf : is.Subsingleton) :
iis, s i f iis, s i f

Weaker version of Filter.biInter_mem that assumes Subsingleton β rather than Finite β.

theorem Filter.iInter_mem' {α : Type u} {f : Filter α} {β : Sort v} {s : βSet α} [Subsingleton β] :
⋂ (i : β), s i f ∀ (i : β), s i f

Weaker version of Filter.iInter_mem that assumes Subsingleton β rather than Finite β.

theorem Filter.exists_mem_subset_iff {α : Type u} {f : Filter α} {s : Set α} :
(∃ tf, t s) s f
theorem Filter.monotone_mem {α : Type u} {f : Filter α} :
Monotone fun (s : Set α) => s f
theorem Filter.exists_mem_and_iff {α : Type u} {f : Filter α} {P Q : Set αProp} (hP : Antitone P) (hQ : Antitone Q) :
((∃ uf, P u) uf, Q u) uf, P u Q u
theorem Filter.forall_in_swap {α : Type u} {f : Filter α} {β : Type u_1} {p : Set αβProp} :
(∀ af, ∀ (b : β), p a b) ∀ (b : β), af, p a b
theorem Filter.mem_principal_self {α : Type u} (s : Set α) :
theorem Filter.not_le {α : Type u} {f g : Filter α} :
¬f g sg, sf
inductive Filter.GenerateSets {α : Type u} (g : Set (Set α)) :
Set αProp

GenerateSets g s: s is in the filter closure of g.

Instances For
    def Filter.generate {α : Type u} (g : Set (Set α)) :

    generate g is the largest filter containing the sets g.

    Equations
    Instances For
      theorem Filter.mem_generate_of_mem {α : Type u} {s : Set (Set α)} {U : Set α} (h : U s) :
      theorem Filter.le_generate_iff {α : Type u} {s : Set (Set α)} {f : Filter α} :
      @[simp]
      theorem Filter.generate_singleton {α : Type u} (s : Set α) :
      def Filter.mkOfClosure {α : Type u} (s : Set (Set α)) (hs : (generate s).sets = s) :

      mkOfClosure s hs constructs a filter on α whose elements set is exactly s : Set (Set α), provided one gives the assumption hs : (generate s).sets = s.

      Equations
      • Filter.mkOfClosure s hs = { sets := s, univ_sets := , sets_of_superset := , inter_sets := }
      Instances For
        theorem Filter.mkOfClosure_sets {α : Type u} {s : Set (Set α)} {hs : (generate s).sets = s} :

        Galois insertion from sets of sets into filters.

        Equations
        Instances For
          theorem Filter.mem_inf_iff {α : Type u} {f g : Filter α} {s : Set α} :
          s f g t₁f, t₂g, s = t₁ t₂
          theorem Filter.mem_inf_of_left {α : Type u} {f g : Filter α} {s : Set α} (h : s f) :
          s f g
          theorem Filter.mem_inf_of_right {α : Type u} {f g : Filter α} {s : Set α} (h : s g) :
          s f g
          theorem Filter.inter_mem_inf {α : Type u} {f g : Filter α} {s t : Set α} (hs : s f) (ht : t g) :
          s t f g
          theorem Filter.mem_inf_of_inter {α : Type u} {f g : Filter α} {s t u : Set α} (hs : s f) (ht : t g) (h : s t u) :
          u f g
          theorem Filter.mem_inf_iff_superset {α : Type u} {f g : Filter α} {s : Set α} :
          s f g t₁f, t₂g, t₁ t₂ s

          Complete lattice structure on Filter α.

          Equations
          instance Filter.instInhabited {α : Type u} :
          Equations
          theorem Filter.NeBot.ne {α : Type u} {f : Filter α} (hf : f.NeBot) :
          @[simp]
          theorem Filter.not_neBot {α : Type u} {f : Filter α} :
          theorem Filter.NeBot.mono {α : Type u} {f g : Filter α} (hf : f.NeBot) (hg : f g) :
          theorem Filter.neBot_of_le {α : Type u} {f g : Filter α} [hf : f.NeBot] (hg : f g) :
          @[simp]
          theorem Filter.sup_neBot {α : Type u} {f g : Filter α} :
          theorem Filter.eq_or_neBot {α : Type u} (f : Filter α) :

          Either f = ⊥ or Filter.NeBot f. This is a version of eq_or_ne that uses Filter.NeBot as the second alternative, to be used as an instance.

          theorem Filter.sup_sets_eq {α : Type u} {f g : Filter α} :
          (f g).sets = f.sets g.sets
          theorem Filter.sSup_sets_eq {α : Type u} {s : Set (Filter α)} :
          (sSup s).sets = fs, f.sets
          theorem Filter.iSup_sets_eq {α : Type u} {ι : Sort x} {f : ιFilter α} :
          (iSup f).sets = ⋂ (i : ι), (f i).sets
          theorem Filter.generate_union {α : Type u} {s t : Set (Set α)} :
          theorem Filter.generate_iUnion {α : Type u} {ι : Sort x} {s : ιSet (Set α)} :
          generate (⋃ (i : ι), s i) = ⨅ (i : ι), generate (s i)
          @[simp]
          theorem Filter.mem_sup {α : Type u} {f g : Filter α} {s : Set α} :
          s f g s f s g
          theorem Filter.union_mem_sup {α : Type u} {f g : Filter α} {s t : Set α} (hs : s f) (ht : t g) :
          s t f g
          @[simp]
          theorem Filter.mem_iSup {α : Type u} {ι : Sort x} {x : Set α} {f : ιFilter α} :
          x iSup f ∀ (i : ι), x f i
          @[simp]
          theorem Filter.iSup_neBot {α : Type u} {ι : Sort x} {f : ιFilter α} :
          (⨆ (i : ι), f i).NeBot ∃ (i : ι), (f i).NeBot
          theorem Filter.iInf_eq_generate {α : Type u} {ι : Sort x} (s : ιFilter α) :
          iInf s = generate (⋃ (i : ι), (s i).sets)
          theorem Filter.mem_iInf_of_mem {α : Type u} {ι : Sort x} {f : ιFilter α} (i : ι) {s : Set α} (hs : s f i) :
          s ⨅ (i : ι), f i
          @[simp]
          theorem Filter.le_principal_iff {α : Type u} {s : Set α} {f : Filter α} :
          theorem Filter.Iic_principal {α : Type u} (s : Set α) :
          theorem Filter.principal_mono {α : Type u} {s t : Set α} :

          Alias of the reverse direction of Filter.principal_mono.

          @[simp]
          theorem Filter.principal_eq_iff_eq {α : Type u} {s t : Set α} :
          @[simp]
          theorem Filter.join_principal_eq_sSup {α : Type u} {s : Set (Filter α)} :
          theorem Filter.generate_eq_biInf {α : Type u} (S : Set (Set α)) :
          generate S = sS, principal s

          Lattice equations #

          theorem Filter.empty_mem_iff_bot {α : Type u} {f : Filter α} :
          theorem Filter.nonempty_of_mem {α : Type u} {f : Filter α} [hf : f.NeBot] {s : Set α} (hs : s f) :
          theorem Filter.NeBot.nonempty_of_mem {α : Type u} {f : Filter α} (hf : f.NeBot) {s : Set α} (hs : s f) :
          @[simp]
          theorem Filter.empty_not_mem {α : Type u} (f : Filter α) [f.NeBot] :
          f
          theorem Filter.nonempty_of_neBot {α : Type u} (f : Filter α) [f.NeBot] :
          theorem Filter.compl_not_mem {α : Type u} {f : Filter α} {s : Set α} [f.NeBot] (h : s f) :
          sf
          theorem Filter.filter_eq_bot_of_isEmpty {α : Type u} [IsEmpty α] (f : Filter α) :
          f =
          theorem Filter.disjoint_iff {α : Type u} {f g : Filter α} :
          Disjoint f g sf, tg, Disjoint s t
          theorem Filter.disjoint_of_disjoint_of_mem {α : Type u} {f g : Filter α} {s t : Set α} (h : Disjoint s t) (hs : s f) (ht : t g) :
          theorem Filter.NeBot.not_disjoint {α : Type u} {f : Filter α} {s t : Set α} (hf : f.NeBot) (hs : s f) (ht : t f) :
          theorem Filter.inf_eq_bot_iff {α : Type u} {f g : Filter α} :
          f g = Uf, Vg, U V =
          instance Filter.unique {α : Type u} [IsEmpty α] :

          There is exactly one filter on an empty type.

          Equations
          theorem Filter.NeBot.nonempty {α : Type u} (f : Filter α) [hf : f.NeBot] :
          theorem Filter.eq_top_of_neBot {α : Type u} [Subsingleton α] (l : Filter α) [l.NeBot] :
          l =

          There are only two filters on a Subsingleton: and . If the type is empty, then they are equal.

          theorem Filter.forall_mem_nonempty_iff_neBot {α : Type u} {f : Filter α} :
          (∀ sf, s.Nonempty) f.NeBot
          theorem Filter.eq_sInf_of_mem_iff_exists_mem {α : Type u} {S : Set (Filter α)} {l : Filter α} (h : ∀ {s : Set α}, s l fS, s f) :
          l = sInf S
          theorem Filter.eq_iInf_of_mem_iff_exists_mem {α : Type u} {ι : Sort x} {f : ιFilter α} {l : Filter α} (h : ∀ {s : Set α}, s l ∃ (i : ι), s f i) :
          l = iInf f
          theorem Filter.eq_biInf_of_mem_iff_exists_mem {α : Type u} {ι : Sort x} {f : ιFilter α} {p : ιProp} {l : Filter α} (h : ∀ {s : Set α}, s l ∃ (i : ι), p i s f i) :
          l = ⨅ (i : ι), ⨅ (_ : p i), f i
          theorem Filter.iInf_sets_eq {α : Type u} {ι : Sort x} {f : ιFilter α} (h : Directed (fun (x1 x2 : Filter α) => x1 x2) f) [ne : Nonempty ι] :
          (iInf f).sets = ⋃ (i : ι), (f i).sets
          theorem Filter.mem_iInf_of_directed {α : Type u} {ι : Sort x} {f : ιFilter α} (h : Directed (fun (x1 x2 : Filter α) => x1 x2) f) [Nonempty ι] (s : Set α) :
          s iInf f ∃ (i : ι), s f i
          theorem Filter.mem_biInf_of_directed {α : Type u} {β : Type v} {f : βFilter α} {s : Set β} (h : DirectedOn (f ⁻¹'o fun (x1 x2 : Filter α) => x1 x2) s) (ne : s.Nonempty) {t : Set α} :
          t is, f i is, t f i
          theorem Filter.biInf_sets_eq {α : Type u} {β : Type v} {f : βFilter α} {s : Set β} (h : DirectedOn (f ⁻¹'o fun (x1 x2 : Filter α) => x1 x2) s) (ne : s.Nonempty) :
          (⨅ is, f i).sets = is, (f i).sets
          @[simp]
          theorem Filter.sup_join {α : Type u} {f₁ f₂ : Filter (Filter α)} :
          f₁.join f₂.join = (f₁ f₂).join
          @[simp]
          theorem Filter.iSup_join {α : Type u} {ι : Sort w} {f : ιFilter (Filter α)} :
          ⨆ (x : ι), (f x).join = (⨆ (x : ι), f x).join
          theorem Filter.iInf_neBot_of_directed' {α : Type u} {ι : Sort x} {f : ιFilter α} [Nonempty ι] (hd : Directed (fun (x1 x2 : Filter α) => x1 x2) f) :
          (∀ (i : ι), (f i).NeBot)(iInf f).NeBot

          If f : ι → Filter α is directed, ι is not empty, and ∀ i, f i ≠ ⊥, then iInf f ≠ ⊥. See also iInf_neBot_of_directed for a version assuming Nonempty α instead of Nonempty ι.

          theorem Filter.iInf_neBot_of_directed {α : Type u} {ι : Sort x} {f : ιFilter α} [hn : Nonempty α] (hd : Directed (fun (x1 x2 : Filter α) => x1 x2) f) (hb : ∀ (i : ι), (f i).NeBot) :

          If f : ι → Filter α is directed, α is not empty, and ∀ i, f i ≠ ⊥, then iInf f ≠ ⊥. See also iInf_neBot_of_directed' for a version assuming Nonempty ι instead of Nonempty α.

          theorem Filter.sInf_neBot_of_directed' {α : Type u} {s : Set (Filter α)} (hne : s.Nonempty) (hd : DirectedOn (fun (x1 x2 : Filter α) => x1 x2) s) (hbot : s) :
          theorem Filter.sInf_neBot_of_directed {α : Type u} [Nonempty α] {s : Set (Filter α)} (hd : DirectedOn (fun (x1 x2 : Filter α) => x1 x2) s) (hbot : s) :
          theorem Filter.iInf_neBot_iff_of_directed' {α : Type u} {ι : Sort x} {f : ιFilter α} [Nonempty ι] (hd : Directed (fun (x1 x2 : Filter α) => x1 x2) f) :
          (iInf f).NeBot ∀ (i : ι), (f i).NeBot
          theorem Filter.iInf_neBot_iff_of_directed {α : Type u} {ι : Sort x} {f : ιFilter α} [Nonempty α] (hd : Directed (fun (x1 x2 : Filter α) => x1 x2) f) :
          (iInf f).NeBot ∀ (i : ι), (f i).NeBot

          principal equations #

          @[simp]
          theorem Filter.inf_principal {α : Type u} {s t : Set α} :
          @[simp]
          theorem Filter.sup_principal {α : Type u} {s t : Set α} :
          @[simp]
          theorem Filter.iSup_principal {α : Type u} {ι : Sort w} {s : ιSet α} :
          ⨆ (x : ι), principal (s x) = principal (⋃ (i : ι), s i)
          @[simp]
          theorem Filter.principal_eq_bot_iff {α : Type u} {s : Set α} :
          @[simp]
          theorem Filter.principal_neBot_iff {α : Type u} {s : Set α} :

          Alias of the reverse direction of Filter.principal_neBot_iff.

          theorem Filter.mem_inf_principal' {α : Type u} {f : Filter α} {s t : Set α} :
          theorem Filter.mem_inf_principal {α : Type u} {f : Filter α} {s t : Set α} :
          s f principal t {x : α | x tx s} f
          theorem Filter.iSup_inf_principal {α : Type u} {ι : Sort x} (f : ιFilter α) (s : Set α) :
          ⨆ (i : ι), f i principal s = (⨆ (i : ι), f i) principal s
          theorem Filter.inf_principal_eq_bot {α : Type u} {f : Filter α} {s : Set α} :
          theorem Filter.mem_of_eq_bot {α : Type u} {f : Filter α} {s : Set α} (h : f principal s = ) :
          s f
          theorem Filter.diff_mem_inf_principal_compl {α : Type u} {f : Filter α} {s : Set α} (hs : s f) (t : Set α) :
          theorem Filter.principal_le_iff {α : Type u} {s : Set α} {f : Filter α} :
          principal s f Vf, s V
          theorem Filter.join_mono {α : Type u} {f₁ f₂ : Filter (Filter α)} (h : f₁ f₂) :
          f₁.join f₂.join

          Eventually #

          theorem Filter.eventually_iff {α : Type u} {f : Filter α} {P : αProp} :
          (∀ᶠ (x : α) in f, P x) {x : α | P x} f
          @[simp]
          theorem Filter.eventually_mem_set {α : Type u} {s : Set α} {l : Filter α} :
          (∀ᶠ (x : α) in l, x s) s l
          theorem Filter.ext' {α : Type u} {f₁ f₂ : Filter α} (h : ∀ (p : αProp), (∀ᶠ (x : α) in f₁, p x) ∀ᶠ (x : α) in f₂, p x) :
          f₁ = f₂
          theorem Filter.Eventually.filter_mono {α : Type u} {f₁ f₂ : Filter α} (h : f₁ f₂) {p : αProp} (hp : ∀ᶠ (x : α) in f₂, p x) :
          ∀ᶠ (x : α) in f₁, p x
          theorem Filter.eventually_of_mem {α : Type u} {f : Filter α} {P : αProp} {U : Set α} (hU : U f) (h : xU, P x) :
          ∀ᶠ (x : α) in f, P x
          theorem Filter.Eventually.and {α : Type u} {p q : αProp} {f : Filter α} :
          Filter.Eventually p fFilter.Eventually q f∀ᶠ (x : α) in f, p x q x
          @[simp]
          theorem Filter.eventually_true {α : Type u} (f : Filter α) :
          ∀ᶠ (x : α) in f, True
          theorem Filter.Eventually.of_forall {α : Type u} {p : αProp} {f : Filter α} (hp : ∀ (x : α), p x) :
          ∀ᶠ (x : α) in f, p x
          @[deprecated Filter.Eventually.of_forall (since := "2024-08-02")]
          theorem Filter.eventually_of_forall {α : Type u} {p : αProp} {f : Filter α} (hp : ∀ (x : α), p x) :
          ∀ᶠ (x : α) in f, p x

          Alias of Filter.Eventually.of_forall.

          @[simp]
          theorem Filter.eventually_false_iff_eq_bot {α : Type u} {f : Filter α} :
          (∀ᶠ (x : α) in f, False) f =
          @[simp]
          theorem Filter.eventually_const {α : Type u} {f : Filter α} [t : f.NeBot] {p : Prop} :
          (∀ᶠ (x : α) in f, p) p
          theorem Filter.eventually_iff_exists_mem {α : Type u} {p : αProp} {f : Filter α} :
          (∀ᶠ (x : α) in f, p x) vf, yv, p y
          theorem Filter.Eventually.exists_mem {α : Type u} {p : αProp} {f : Filter α} (hp : ∀ᶠ (x : α) in f, p x) :
          vf, yv, p y
          theorem Filter.Eventually.mp {α : Type u} {p q : αProp} {f : Filter α} (hp : ∀ᶠ (x : α) in f, p x) (hq : ∀ᶠ (x : α) in f, p xq x) :
          ∀ᶠ (x : α) in f, q x
          theorem Filter.Eventually.mono {α : Type u} {p q : αProp} {f : Filter α} (hp : ∀ᶠ (x : α) in f, p x) (hq : ∀ (x : α), p xq x) :
          ∀ᶠ (x : α) in f, q x
          theorem Filter.forall_eventually_of_eventually_forall {α : Type u} {β : Type v} {f : Filter α} {p : αβProp} (h : ∀ᶠ (x : α) in f, ∀ (y : β), p x y) (y : β) :
          ∀ᶠ (x : α) in f, p x y
          @[simp]
          theorem Filter.eventually_and {α : Type u} {p q : αProp} {f : Filter α} :
          (∀ᶠ (x : α) in f, p x q x) (∀ᶠ (x : α) in f, p x) ∀ᶠ (x : α) in f, q x
          theorem Filter.Eventually.congr {α : Type u} {f : Filter α} {p q : αProp} (h' : ∀ᶠ (x : α) in f, p x) (h : ∀ᶠ (x : α) in f, p x q x) :
          ∀ᶠ (x : α) in f, q x
          theorem Filter.eventually_congr {α : Type u} {f : Filter α} {p q : αProp} (h : ∀ᶠ (x : α) in f, p x q x) :
          (∀ᶠ (x : α) in f, p x) ∀ᶠ (x : α) in f, q x
          @[simp]
          theorem Filter.eventually_or_distrib_left {α : Type u} {f : Filter α} {p : Prop} {q : αProp} :
          (∀ᶠ (x : α) in f, p q x) p ∀ᶠ (x : α) in f, q x
          @[simp]
          theorem Filter.eventually_or_distrib_right {α : Type u} {f : Filter α} {p : αProp} {q : Prop} :
          (∀ᶠ (x : α) in f, p x q) (∀ᶠ (x : α) in f, p x) q
          theorem Filter.eventually_imp_distrib_left {α : Type u} {f : Filter α} {p : Prop} {q : αProp} :
          (∀ᶠ (x : α) in f, pq x) p∀ᶠ (x : α) in f, q x
          @[simp]
          theorem Filter.eventually_bot {α : Type u} {p : αProp} :
          ∀ᶠ (x : α) in , p x
          @[simp]
          theorem Filter.eventually_top {α : Type u} {p : αProp} :
          (∀ᶠ (x : α) in , p x) ∀ (x : α), p x
          @[simp]
          theorem Filter.eventually_sup {α : Type u} {p : αProp} {f g : Filter α} :
          (∀ᶠ (x : α) in f g, p x) (∀ᶠ (x : α) in f, p x) ∀ᶠ (x : α) in g, p x
          @[simp]
          theorem Filter.eventually_sSup {α : Type u} {p : αProp} {fs : Set (Filter α)} :
          (∀ᶠ (x : α) in sSup fs, p x) ffs, ∀ᶠ (x : α) in f, p x
          @[simp]
          theorem Filter.eventually_iSup {α : Type u} {ι : Sort x} {p : αProp} {fs : ιFilter α} :
          (∀ᶠ (x : α) in ⨆ (b : ι), fs b, p x) ∀ (b : ι), ∀ᶠ (x : α) in fs b, p x
          @[simp]
          theorem Filter.eventually_principal {α : Type u} {a : Set α} {p : αProp} :
          (∀ᶠ (x : α) in principal a, p x) xa, p x
          theorem Filter.Eventually.forall_mem {α : Type u_2} {f : Filter α} {s : Set α} {P : αProp} (hP : ∀ᶠ (x : α) in f, P x) (hf : principal s f) (x : α) :
          x sP x
          theorem Filter.eventually_inf {α : Type u} {f g : Filter α} {p : αProp} :
          (∀ᶠ (x : α) in f g, p x) sf, tg, xs t, p x
          theorem Filter.eventually_inf_principal {α : Type u} {f : Filter α} {p : αProp} {s : Set α} :
          (∀ᶠ (x : α) in f principal s, p x) ∀ᶠ (x : α) in f, x sp x
          theorem Filter.eventually_iff_all_subsets {α : Type u} {f : Filter α} {p : αProp} :
          (∀ᶠ (x : α) in f, p x) ∀ (s : Set α), ∀ᶠ (x : α) in f, x sp x

          Frequently #

          theorem Filter.Eventually.frequently {α : Type u} {f : Filter α} [f.NeBot] {p : αProp} (h : ∀ᶠ (x : α) in f, p x) :
          ∃ᶠ (x : α) in f, p x
          theorem Filter.Frequently.of_forall {α : Type u} {f : Filter α} [f.NeBot] {p : αProp} (h : ∀ (x : α), p x) :
          ∃ᶠ (x : α) in f, p x
          @[deprecated Filter.Frequently.of_forall (since := "2024-08-02")]
          theorem Filter.frequently_of_forall {α : Type u} {f : Filter α} [f.NeBot] {p : αProp} (h : ∀ (x : α), p x) :
          ∃ᶠ (x : α) in f, p x

          Alias of Filter.Frequently.of_forall.

          theorem Filter.Frequently.mp {α : Type u} {p q : αProp} {f : Filter α} (h : ∃ᶠ (x : α) in f, p x) (hpq : ∀ᶠ (x : α) in f, p xq x) :
          ∃ᶠ (x : α) in f, q x
          theorem Filter.frequently_congr {α : Type u} {p q : αProp} {f : Filter α} (h : ∀ᶠ (x : α) in f, p x q x) :
          (∃ᶠ (x : α) in f, p x) ∃ᶠ (x : α) in f, q x
          theorem Filter.Frequently.filter_mono {α : Type u} {p : αProp} {f g : Filter α} (h : ∃ᶠ (x : α) in f, p x) (hle : f g) :
          ∃ᶠ (x : α) in g, p x
          theorem Filter.Frequently.mono {α : Type u} {p q : αProp} {f : Filter α} (h : ∃ᶠ (x : α) in f, p x) (hpq : ∀ (x : α), p xq x) :
          ∃ᶠ (x : α) in f, q x
          theorem Filter.Frequently.and_eventually {α : Type u} {p q : αProp} {f : Filter α} (hp : ∃ᶠ (x : α) in f, p x) (hq : ∀ᶠ (x : α) in f, q x) :
          ∃ᶠ (x : α) in f, p x q x
          theorem Filter.Eventually.and_frequently {α : Type u} {p q : αProp} {f : Filter α} (hp : ∀ᶠ (x : α) in f, p x) (hq : ∃ᶠ (x : α) in f, q x) :
          ∃ᶠ (x : α) in f, p x q x
          theorem Filter.Frequently.exists {α : Type u} {p : αProp} {f : Filter α} (hp : ∃ᶠ (x : α) in f, p x) :
          ∃ (x : α), p x
          theorem Filter.Eventually.exists {α : Type u} {p : αProp} {f : Filter α} [f.NeBot] (hp : ∀ᶠ (x : α) in f, p x) :
          ∃ (x : α), p x
          theorem Filter.frequently_iff_neBot {α : Type u} {l : Filter α} {p : αProp} :
          (∃ᶠ (x : α) in l, p x) (l principal {x : α | p x}).NeBot
          theorem Filter.frequently_mem_iff_neBot {α : Type u} {l : Filter α} {s : Set α} :
          (∃ᶠ (x : α) in l, x s) (l principal s).NeBot
          theorem Filter.frequently_iff_forall_eventually_exists_and {α : Type u} {p : αProp} {f : Filter α} :
          (∃ᶠ (x : α) in f, p x) ∀ {q : αProp}, (∀ᶠ (x : α) in f, q x)∃ (x : α), p x q x
          theorem Filter.frequently_iff {α : Type u} {f : Filter α} {P : αProp} :
          (∃ᶠ (x : α) in f, P x) ∀ {U : Set α}, U fxU, P x
          @[simp]
          theorem Filter.not_eventually {α : Type u} {p : αProp} {f : Filter α} :
          (¬∀ᶠ (x : α) in f, p x) ∃ᶠ (x : α) in f, ¬p x
          @[simp]
          theorem Filter.not_frequently {α : Type u} {p : αProp} {f : Filter α} :
          (¬∃ᶠ (x : α) in f, p x) ∀ᶠ (x : α) in f, ¬p x
          @[simp]
          theorem Filter.frequently_true_iff_neBot {α : Type u} (f : Filter α) :
          (∃ᶠ (x : α) in f, True) f.NeBot
          @[simp]
          theorem Filter.frequently_false {α : Type u} (f : Filter α) :
          ¬∃ᶠ (x : α) in f, False
          @[simp]
          theorem Filter.frequently_const {α : Type u} {f : Filter α} [f.NeBot] {p : Prop} :
          (∃ᶠ (x : α) in f, p) p
          @[simp]
          theorem Filter.frequently_or_distrib {α : Type u} {f : Filter α} {p q : αProp} :
          (∃ᶠ (x : α) in f, p x q x) (∃ᶠ (x : α) in f, p x) ∃ᶠ (x : α) in f, q x
          theorem Filter.frequently_or_distrib_left {α : Type u} {f : Filter α} [f.NeBot] {p : Prop} {q : αProp} :
          (∃ᶠ (x : α) in f, p q x) p ∃ᶠ (x : α) in f, q x
          theorem Filter.frequently_or_distrib_right {α : Type u} {f : Filter α} [f.NeBot] {p : αProp} {q : Prop} :
          (∃ᶠ (x : α) in f, p x q) (∃ᶠ (x : α) in f, p x) q
          theorem Filter.frequently_imp_distrib {α : Type u} {f : Filter α} {p q : αProp} :
          (∃ᶠ (x : α) in f, p xq x) (∀ᶠ (x : α) in f, p x)∃ᶠ (x : α) in f, q x
          theorem Filter.frequently_imp_distrib_left {α : Type u} {f : Filter α} [f.NeBot] {p : Prop} {q : αProp} :
          (∃ᶠ (x : α) in f, pq x) p∃ᶠ (x : α) in f, q x
          theorem Filter.frequently_imp_distrib_right {α : Type u} {f : Filter α} [f.NeBot] {p : αProp} {q : Prop} :
          (∃ᶠ (x : α) in f, p xq) (∀ᶠ (x : α) in f, p x)q
          theorem Filter.eventually_imp_distrib_right {α : Type u} {f : Filter α} {p : αProp} {q : Prop} :
          (∀ᶠ (x : α) in f, p xq) (∃ᶠ (x : α) in f, p x)q
          @[simp]
          theorem Filter.frequently_and_distrib_left {α : Type u} {f : Filter α} {p : Prop} {q : αProp} :
          (∃ᶠ (x : α) in f, p q x) p ∃ᶠ (x : α) in f, q x
          @[simp]
          theorem Filter.frequently_and_distrib_right {α : Type u} {f : Filter α} {p : αProp} {q : Prop} :
          (∃ᶠ (x : α) in f, p x q) (∃ᶠ (x : α) in f, p x) q
          @[simp]
          theorem Filter.frequently_bot {α : Type u} {p : αProp} :
          ¬∃ᶠ (x : α) in , p x
          @[simp]
          theorem Filter.frequently_top {α : Type u} {p : αProp} :
          (∃ᶠ (x : α) in , p x) ∃ (x : α), p x
          @[simp]
          theorem Filter.frequently_principal {α : Type u} {a : Set α} {p : αProp} :
          (∃ᶠ (x : α) in principal a, p x) xa, p x
          theorem Filter.frequently_inf_principal {α : Type u} {f : Filter α} {s : Set α} {p : αProp} :
          (∃ᶠ (x : α) in f principal s, p x) ∃ᶠ (x : α) in f, x s p x
          theorem Filter.Frequently.of_inf_principal {α : Type u} {f : Filter α} {s : Set α} {p : αProp} :
          (∃ᶠ (x : α) in f principal s, p x)∃ᶠ (x : α) in f, x s p x

          Alias of the forward direction of Filter.frequently_inf_principal.

          theorem Filter.Frequently.inf_principal {α : Type u} {f : Filter α} {s : Set α} {p : αProp} :
          (∃ᶠ (x : α) in f, x s p x)∃ᶠ (x : α) in f principal s, p x

          Alias of the reverse direction of Filter.frequently_inf_principal.

          theorem Filter.frequently_sup {α : Type u} {p : αProp} {f g : Filter α} :
          (∃ᶠ (x : α) in f g, p x) (∃ᶠ (x : α) in f, p x) ∃ᶠ (x : α) in g, p x
          @[simp]
          theorem Filter.frequently_sSup {α : Type u} {p : αProp} {fs : Set (Filter α)} :
          (∃ᶠ (x : α) in sSup fs, p x) ffs, ∃ᶠ (x : α) in f, p x
          @[simp]
          theorem Filter.frequently_iSup {α : Type u} {β : Type v} {p : αProp} {fs : βFilter α} :
          (∃ᶠ (x : α) in ⨆ (b : β), fs b, p x) ∃ (b : β), ∃ᶠ (x : α) in fs b, p x
          theorem Filter.Eventually.choice {α : Type u} {β : Type v} {r : αβProp} {l : Filter α} [l.NeBot] (h : ∀ᶠ (x : α) in l, ∃ (y : β), r x y) :
          ∃ (f : αβ), ∀ᶠ (x : α) in l, r x (f x)
          theorem Filter.skolem {ι : Type u_2} {α : ιType u_3} [∀ (i : ι), Nonempty (α i)] {P : (i : ι) → α iProp} {F : Filter ι} :
          (∀ᶠ (i : ι) in F, ∃ (b : α i), P i b) ∃ (b : (i : ι) → α i), ∀ᶠ (i : ι) in F, P i (b i)

          Relation “eventually equal” #

          theorem Filter.EventuallyEq.eventually {α : Type u} {β : Type v} {l : Filter α} {f g : αβ} (h : f =ᶠ[l] g) :
          ∀ᶠ (x : α) in l, f x = g x
          @[simp]
          theorem Filter.eventuallyEq_top {α : Type u} {β : Type v} {f g : αβ} :
          f =ᶠ[] g f = g
          theorem Filter.EventuallyEq.rw {α : Type u} {β : Type v} {l : Filter α} {f g : αβ} (h : f =ᶠ[l] g) (p : αβProp) (hf : ∀ᶠ (x : α) in l, p x (f x)) :
          ∀ᶠ (x : α) in l, p x (g x)
          theorem Filter.eventuallyEq_set {α : Type u} {s t : Set α} {l : Filter α} :
          s =ᶠ[l] t ∀ᶠ (x : α) in l, x s x t
          theorem Filter.Eventually.set_eq {α : Type u} {s t : Set α} {l : Filter α} :
          (∀ᶠ (x : α) in l, x s x t)s =ᶠ[l] t

          Alias of the reverse direction of Filter.eventuallyEq_set.

          theorem Filter.EventuallyEq.mem_iff {α : Type u} {s t : Set α} {l : Filter α} :
          s =ᶠ[l] t∀ᶠ (x : α) in l, x s x t

          Alias of the forward direction of Filter.eventuallyEq_set.

          @[simp]
          theorem Filter.eventuallyEq_univ {α : Type u} {s : Set α} {l : Filter α} :
          theorem Filter.EventuallyEq.exists_mem {α : Type u} {β : Type v} {l : Filter α} {f g : αβ} (h : f =ᶠ[l] g) :
          sl, Set.EqOn f g s
          theorem Filter.eventuallyEq_of_mem {α : Type u} {β : Type v} {l : Filter α} {f g : αβ} {s : Set α} (hs : s l) (h : Set.EqOn f g s) :
          f =ᶠ[l] g
          theorem Filter.eventuallyEq_iff_exists_mem {α : Type u} {β : Type v} {l : Filter α} {f g : αβ} :
          f =ᶠ[l] g sl, Set.EqOn f g s
          theorem Filter.EventuallyEq.filter_mono {α : Type u} {β : Type v} {l l' : Filter α} {f g : αβ} (h₁ : f =ᶠ[l] g) (h₂ : l' l) :
          f =ᶠ[l'] g
          @[simp]
          theorem Filter.EventuallyEq.refl {α : Type u} {β : Type v} (l : Filter α) (f : αβ) :
          f =ᶠ[l] f
          theorem Filter.EventuallyEq.rfl {α : Type u} {β : Type v} {l : Filter α} {f : αβ} :
          f =ᶠ[l] f
          theorem Filter.EventuallyEq.of_eq {α : Type u} {β : Type v} {l : Filter α} {f g : αβ} (h : f = g) :
          f =ᶠ[l] g
          theorem Eq.eventuallyEq {α : Type u} {β : Type v} {l : Filter α} {f g : αβ} (h : f = g) :
          f =ᶠ[l] g

          Alias of Filter.EventuallyEq.of_eq.

          theorem Filter.EventuallyEq.symm {α : Type u} {β : Type v} {f g : αβ} {l : Filter α} (H : f =ᶠ[l] g) :
          g =ᶠ[l] f
          theorem Filter.eventuallyEq_comm {α : Type u} {β : Type v} {f g : αβ} {l : Filter α} :
          f =ᶠ[l] g g =ᶠ[l] f
          theorem Filter.EventuallyEq.trans {α : Type u} {β : Type v} {l : Filter α} {f g h : αβ} (H₁ : f =ᶠ[l] g) (H₂ : g =ᶠ[l] h) :
          f =ᶠ[l] h
          theorem Filter.EventuallyEq.congr_left {α : Type u} {β : Type v} {l : Filter α} {f g h : αβ} (H : f =ᶠ[l] g) :
          f =ᶠ[l] h g =ᶠ[l] h
          theorem Filter.EventuallyEq.congr_right {α : Type u} {β : Type v} {l : Filter α} {f g h : αβ} (H : g =ᶠ[l] h) :
          f =ᶠ[l] g f =ᶠ[l] h
          instance Filter.instTransForallEventuallyEq {α : Type u} {β : Type v} {l : Filter α} :
          Trans (fun (x1 x2 : αβ) => x1 =ᶠ[l] x2) (fun (x1 x2 : αβ) => x1 =ᶠ[l] x2) fun (x1 x2 : αβ) => x1 =ᶠ[l] x2
          Equations
          theorem Filter.EventuallyEq.prod_mk {α : Type u} {β : Type v} {γ : Type w} {l : Filter α} {f f' : αβ} (hf : f =ᶠ[l] f') {g g' : αγ} (hg : g =ᶠ[l] g') :
          (fun (x : α) => (f x, g x)) =ᶠ[l] fun (x : α) => (f' x, g' x)
          theorem Filter.EventuallyEq.fun_comp {α : Type u} {β : Type v} {γ : Type w} {f g : αβ} {l : Filter α} (H : f =ᶠ[l] g) (h : βγ) :
          h f =ᶠ[l] h g
          theorem Filter.EventuallyEq.comp₂ {α : Type u} {β : Type v} {γ : Type w} {δ : Type u_2} {f f' : αβ} {g g' : αγ} {l : Filter α} (Hf : f =ᶠ[l] f') (h : βγδ) (Hg : g =ᶠ[l] g') :
          (fun (x : α) => h (f x) (g x)) =ᶠ[l] fun (x : α) => h (f' x) (g' x)
          theorem Filter.EventuallyEq.mul {α : Type u} {β : Type v} [Mul β] {f f' g g' : αβ} {l : Filter α} (h : f =ᶠ[l] g) (h' : f' =ᶠ[l] g') :
          (fun (x : α) => f x * f' x) =ᶠ[l] fun (x : α) => g x * g' x
          theorem Filter.EventuallyEq.add {α : Type u} {β : Type v} [Add β] {f f' g g' : αβ} {l : Filter α} (h : f =ᶠ[l] g) (h' : f' =ᶠ[l] g') :
          (fun (x : α) => f x + f' x) =ᶠ[l] fun (x : α) => g x + g' x
          theorem Filter.EventuallyEq.pow_const {α : Type u} {β : Type v} {γ : Type u_2} [Pow β γ] {f g : αβ} {l : Filter α} (h : f =ᶠ[l] g) (c : γ) :
          (fun (x : α) => f x ^ c) =ᶠ[l] fun (x : α) => g x ^ c
          theorem Filter.EventuallyEq.const_smul {α : Type u} {β : Type v} {γ : Type u_2} [SMul γ β] {f g : αβ} {l : Filter α} (h : f =ᶠ[l] g) (c : γ) :
          (fun (x : α) => c f x) =ᶠ[l] fun (x : α) => c g x
          theorem Filter.EventuallyEq.inv {α : Type u} {β : Type v} [Inv β] {f g : αβ} {l : Filter α} (h : f =ᶠ[l] g) :
          (fun (x : α) => (f x)⁻¹) =ᶠ[l] fun (x : α) => (g x)⁻¹
          theorem Filter.EventuallyEq.neg {α : Type u} {β : Type v} [Neg β] {f g : αβ} {l : Filter α} (h : f =ᶠ[l] g) :
          (fun (x : α) => -f x) =ᶠ[l] fun (x : α) => -g x
          theorem Filter.EventuallyEq.div {α : Type u} {β : Type v} [Div β] {f f' g g' : αβ} {l : Filter α} (h : f =ᶠ[l] g) (h' : f' =ᶠ[l] g') :
          (fun (x : α) => f x / f' x) =ᶠ[l] fun (x : α) => g x / g' x
          theorem Filter.EventuallyEq.sub {α : Type u} {β : Type v} [Sub β] {f f' g g' : αβ} {l : Filter α} (h : f =ᶠ[l] g) (h' : f' =ᶠ[l] g') :
          (fun (x : α) => f x - f' x) =ᶠ[l] fun (x : α) => g x - g' x
          theorem Filter.EventuallyEq.const_vadd {α : Type u} {β : Type v} {γ : Type u_2} [VAdd γ β] {f g : αβ} {l : Filter α} (h : f =ᶠ[l] g) (c : γ) :
          (fun (x : α) => c +ᵥ f x) =ᶠ[l] fun (x : α) => c +ᵥ g x
          theorem Filter.EventuallyEq.smul {α : Type u} {β : Type v} {𝕜 : Type u_2} [SMul 𝕜 β] {l : Filter α} {f f' : α𝕜} {g g' : αβ} (hf : f =ᶠ[l] f') (hg : g =ᶠ[l] g') :
          (fun (x : α) => f x g x) =ᶠ[l] fun (x : α) => f' x g' x
          theorem Filter.EventuallyEq.vadd {α : Type u} {β : Type v} {𝕜 : Type u_2} [VAdd 𝕜 β] {l : Filter α} {f f' : α𝕜} {g g' : αβ} (hf : f =ᶠ[l] f') (hg : g =ᶠ[l] g') :
          (fun (x : α) => f x +ᵥ g x) =ᶠ[l] fun (x : α) => f' x +ᵥ g' x
          theorem Filter.EventuallyEq.sup {α : Type u} {β : Type v} [Max β] {l : Filter α} {f f' g g' : αβ} (hf : f =ᶠ[l] f') (hg : g =ᶠ[l] g') :
          (fun (x : α) => f x g x) =ᶠ[l] fun (x : α) => f' x g' x
          theorem Filter.EventuallyEq.inf {α : Type u} {β : Type v} [Min β] {l : Filter α} {f f' g g' : αβ} (hf : f =ᶠ[l] f') (hg : g =ᶠ[l] g') :
          (fun (x : α) => f x g x) =ᶠ[l] fun (x : α) => f' x g' x
          theorem Filter.EventuallyEq.preimage {α : Type u} {β : Type v} {l : Filter α} {f g : αβ} (h : f =ᶠ[l] g) (s : Set β) :
          theorem Filter.EventuallyEq.inter {α : Type u} {s t s' t' : Set α} {l : Filter α} (h : s =ᶠ[l] t) (h' : s' =ᶠ[l] t') :
          s s' =ᶠ[l] t t'
          theorem Filter.EventuallyEq.union {α : Type u} {s t s' t' : Set α} {l : Filter α} (h : s =ᶠ[l] t) (h' : s' =ᶠ[l] t') :
          s s' =ᶠ[l] t t'
          theorem Filter.EventuallyEq.compl {α : Type u} {s t : Set α} {l : Filter α} (h : s =ᶠ[l] t) :
          theorem Filter.EventuallyEq.diff {α : Type u} {s t s' t' : Set α} {l : Filter α} (h : s =ᶠ[l] t) (h' : s' =ᶠ[l] t') :
          s \ s' =ᶠ[l] t \ t'
          theorem Filter.EventuallyEq.symmDiff {α : Type u} {s t s' t' : Set α} {l : Filter α} (h : s =ᶠ[l] t) (h' : s' =ᶠ[l] t') :
          theorem Filter.eventuallyEq_empty {α : Type u} {s : Set α} {l : Filter α} :
          s =ᶠ[l] ∀ᶠ (x : α) in l, xs
          theorem Filter.inter_eventuallyEq_left {α : Type u} {s t : Set α} {l : Filter α} :
          s t =ᶠ[l] s ∀ᶠ (x : α) in l, x sx t
          theorem Filter.inter_eventuallyEq_right {α : Type u} {s t : Set α} {l : Filter α} :
          s t =ᶠ[l] t ∀ᶠ (x : α) in l, x tx s
          @[simp]
          theorem Filter.eventuallyEq_principal {α : Type u} {β : Type v} {s : Set α} {f g : αβ} :
          theorem Filter.eventuallyEq_inf_principal_iff {α : Type u} {β : Type v} {F : Filter α} {s : Set α} {f g : αβ} :
          f =ᶠ[F principal s] g ∀ᶠ (x : α) in F, x sf x = g x
          theorem Filter.EventuallyEq.sub_eq {α : Type u} {β : Type v} [AddGroup β] {f g : αβ} {l : Filter α} (h : f =ᶠ[l] g) :
          f - g =ᶠ[l] 0
          theorem Filter.eventuallyEq_iff_sub {α : Type u} {β : Type v} [AddGroup β] {f g : αβ} {l : Filter α} :
          f =ᶠ[l] g f - g =ᶠ[l] 0
          theorem Filter.eventuallyEq_iff_all_subsets {α : Type u} {β : Type v} {f g : αβ} {l : Filter α} :
          f =ᶠ[l] g ∀ (s : Set α), ∀ᶠ (x : α) in l, x sf x = g x
          theorem Filter.EventuallyLE.congr {α : Type u} {β : Type v} [LE β] {l : Filter α} {f f' g g' : αβ} (H : f ≤ᶠ[l] g) (hf : f =ᶠ[l] f') (hg : g =ᶠ[l] g') :
          f' ≤ᶠ[l] g'
          theorem Filter.eventuallyLE_congr {α : Type u} {β : Type v} [LE β] {l : Filter α} {f f' g g' : αβ} (hf : f =ᶠ[l] f') (hg : g =ᶠ[l] g') :
          f ≤ᶠ[l] g f' ≤ᶠ[l] g'
          theorem Filter.eventuallyLE_iff_all_subsets {α : Type u} {β : Type v} [LE β] {f g : αβ} {l : Filter α} :
          f ≤ᶠ[l] g ∀ (s : Set α), ∀ᶠ (x : α) in l, x sf x g x
          theorem Filter.EventuallyEq.le {α : Type u} {β : Type v} [Preorder β] {l : Filter α} {f g : αβ} (h : f =ᶠ[l] g) :
          theorem Filter.EventuallyLE.refl {α : Type u} {β : Type v} [Preorder β] (l : Filter α) (f : αβ) :
          theorem Filter.EventuallyLE.rfl {α : Type u} {β : Type v} [Preorder β] {l : Filter α} {f : αβ} :
          theorem Filter.EventuallyLE.trans {α : Type u} {β : Type v} [Preorder β] {l : Filter α} {f g h : αβ} (H₁ : f ≤ᶠ[l] g) (H₂ : g ≤ᶠ[l] h) :
          instance Filter.instTransForallEventuallyLE {α : Type u} {β : Type v} [Preorder β] {l : Filter α} :
          Trans (fun (x1 x2 : αβ) => x1 ≤ᶠ[l] x2) (fun (x1 x2 : αβ) => x1 ≤ᶠ[l] x2) fun (x1 x2 : αβ) => x1 ≤ᶠ[l] x2
          Equations
          theorem Filter.EventuallyEq.trans_le {α : Type u} {β : Type v} [Preorder β] {l : Filter α} {f g h : αβ} (H₁ : f =ᶠ[l] g) (H₂ : g ≤ᶠ[l] h) :
          instance Filter.instTransForallEventuallyEqEventuallyLE {α : Type u} {β : Type v} [Preorder β] {l : Filter α} :
          Trans (fun (x1 x2 : αβ) => x1 =ᶠ[l] x2) (fun (x1 x2 : αβ) => x1 ≤ᶠ[l] x2) fun (x1 x2 : αβ) => x1 ≤ᶠ[l] x2
          Equations
          theorem Filter.EventuallyLE.trans_eq {α : Type u} {β : Type v} [Preorder β] {l : Filter α} {f g h : αβ} (H₁ : f ≤ᶠ[l] g) (H₂ : g =ᶠ[l] h) :
          instance Filter.instTransForallEventuallyLEEventuallyEq {α : Type u} {β : Type v} [Preorder β] {l : Filter α} :
          Trans (fun (x1 x2 : αβ) => x1 ≤ᶠ[l] x2) (fun (x1 x2 : αβ) => x1 =ᶠ[l] x2) fun (x1 x2 : αβ) => x1 ≤ᶠ[l] x2
          Equations
          theorem Filter.EventuallyLE.antisymm {α : Type u} {β : Type v} [PartialOrder β] {l : Filter α} {f g : αβ} (h₁ : f ≤ᶠ[l] g) (h₂ : g ≤ᶠ[l] f) :
          f =ᶠ[l] g
          theorem Filter.eventuallyLE_antisymm_iff {α : Type u} {β : Type v} [PartialOrder β] {l : Filter α} {f g : αβ} :
          f =ᶠ[l] g f ≤ᶠ[l] g g ≤ᶠ[l] f
          theorem Filter.EventuallyLE.le_iff_eq {α : Type u} {β : Type v} [PartialOrder β] {l : Filter α} {f g : αβ} (h : f ≤ᶠ[l] g) :
          g ≤ᶠ[l] f g =ᶠ[l] f
          theorem Filter.Eventually.ne_of_lt {α : Type u} {β : Type v} [Preorder β] {l : Filter α} {f g : αβ} (h : ∀ᶠ (x : α) in l, f x < g x) :
          ∀ᶠ (x : α) in l, f x g x
          theorem Filter.Eventually.ne_top_of_lt {α : Type u} {β : Type v} [PartialOrder β] [OrderTop β] {l : Filter α} {f g : αβ} (h : ∀ᶠ (x : α) in l, f x < g x) :
          ∀ᶠ (x : α) in l, f x
          theorem Filter.Eventually.lt_top_of_ne {α : Type u} {β : Type v} [PartialOrder β] [OrderTop β] {l : Filter α} {f : αβ} (h : ∀ᶠ (x : α) in l, f x ) :
          ∀ᶠ (x : α) in l, f x <
          theorem Filter.Eventually.lt_top_iff_ne_top {α : Type u} {β : Type v} [PartialOrder β] [OrderTop β] {l : Filter α} {f : αβ} :
          (∀ᶠ (x : α) in l, f x < ) ∀ᶠ (x : α) in l, f x
          theorem Filter.EventuallyLE.inter {α : Type u} {s t s' t' : Set α} {l : Filter α} (h : s ≤ᶠ[l] t) (h' : s' ≤ᶠ[l] t') :
          s s' ≤ᶠ[l] t t'
          theorem Filter.EventuallyLE.union {α : Type u} {s t s' t' : Set α} {l : Filter α} (h : s ≤ᶠ[l] t) (h' : s' ≤ᶠ[l] t') :
          s s' ≤ᶠ[l] t t'
          theorem Filter.EventuallyLE.compl {α : Type u} {s t : Set α} {l : Filter α} (h : s ≤ᶠ[l] t) :
          theorem Filter.EventuallyLE.diff {α : Type u} {s t s' t' : Set α} {l : Filter α} (h : s ≤ᶠ[l] t) (h' : t' ≤ᶠ[l] s') :
          s \ s' ≤ᶠ[l] t \ t'
          theorem Filter.EventuallyLE.sup {α : Type u} {β : Type v} [SemilatticeSup β] {l : Filter α} {f₁ f₂ g₁ g₂ : αβ} (hf : f₁ ≤ᶠ[l] f₂) (hg : g₁ ≤ᶠ[l] g₂) :
          f₁ g₁ ≤ᶠ[l] f₂ g₂
          theorem Filter.EventuallyLE.sup_le {α : Type u} {β : Type v} [SemilatticeSup β] {l : Filter α} {f g h : αβ} (hf : f ≤ᶠ[l] h) (hg : g ≤ᶠ[l] h) :
          f g ≤ᶠ[l] h
          theorem Filter.EventuallyLE.le_sup_of_le_left {α : Type u} {β : Type v} [SemilatticeSup β] {l : Filter α} {f g h : αβ} (hf : h ≤ᶠ[l] f) :
          h ≤ᶠ[l] f g
          theorem Filter.EventuallyLE.le_sup_of_le_right {α : Type u} {β : Type v} [SemilatticeSup β] {l : Filter α} {f g h : αβ} (hg : h ≤ᶠ[l] g) :
          h ≤ᶠ[l] f g
          theorem Filter.join_le {α : Type u} {f : Filter (Filter α)} {l : Filter α} (h : ∀ᶠ (m : Filter α) in f, m l) :
          f.join l
          theorem Set.EqOn.eventuallyEq {α : Type u_1} {β : Type u_2} {s : Set α} {f g : αβ} (h : EqOn f g s) :
          theorem Set.EqOn.eventuallyEq_of_mem {α : Type u_1} {β : Type u_2} {s : Set α} {l : Filter α} {f g : αβ} (h : EqOn f g s) (hl : s l) :
          f =ᶠ[l] g
          theorem HasSubset.Subset.eventuallyLE {α : Type u_1} {l : Filter α} {s t : Set α} (h : s t) :
          theorem Filter.compl_mem_comk {α : Type u_1} {p : Set αProp} {he : p } {hmono : ∀ (t : Set α), p tst, p s} {hunion : ∀ (s : Set α), p s∀ (t : Set α), p tp (s t)} {s : Set α} :
          s comk p he hmono hunion p s