Documentation

Mathlib.Order.Quotient

Order instances on quotients #

We define a Preorder instance on a general Quotient, as the transitive closure of the x ≤ y ∨ x ≈ y relation. This is the quotient object in the category of preorders.

We show that in the case of a linear order with Set.OrdConnected equivalence classes, this relation is automatically transitive (we don't need to take the transitive closure), and gives a LinearOrder structure on the quotient. In that case, the resulting order is sometimes called a condensation.

instance Quotient.instLE_mathlib {α : Type u_1} {s : Setoid α} [LE α] :
Equations
theorem Quotient.le_def {α : Type u_1} {s : Setoid α} [LE α] {x y : α} :
x y Relation.TransGen (fun (x y : α) => x y x y) x y
instance Quotient.instIsReflLe {α : Type u_1} {s : Setoid α} [LE α] :
IsRefl (Quotient s) fun (x1 x2 : Quotient s) => x1 x2
instance Quotient.instIsTransLe {α : Type u_1} {s : Setoid α} [LE α] :
IsTrans (Quotient s) fun (x1 x2 : Quotient s) => x1 x2
instance Quotient.instIsTotalLe {α : Type u_1} {s : Setoid α} [LE α] [IsTotal α fun (x1 x2 : α) => x1 x2] :
IsTotal (Quotient s) fun (x1 x2 : Quotient s) => x1 x2
instance Quotient.instPreorder {α : Type u_1} {s : Setoid α} [LE α] :
Equations
theorem Quotient.mk_monotone {α : Type u_1} {s : Setoid α} [Preorder α] :
theorem Quotient.lift_monotone {α : Type u_2} {β : Type u_3} [Preorder α] {s : Setoid α} [Preorder β] (f : αβ) (hf : Monotone f) (H : ∀ (x₁ x₂ : α), x₁ x₂f x₁ = f x₂) :
theorem Quotient.mk_le_mk {α : Type u_1} {s : Setoid α} [LinearOrder α] [H : ∀ (x : Quotient s), (Quotient.mk s ⁻¹' {x}).OrdConnected] {x y : α} :
instance Quotient.instLinearOrderOfDecidableRelEquiv {α : Type u_1} {s : Setoid α} [LinearOrder α] [H : ∀ (x : Quotient s), (Quotient.mk s ⁻¹' {x}).OrdConnected] [DecidableRel fun (x1 x2 : α) => x1 x2] :
Equations
  • One or more equations did not get rendered due to their size.
theorem Quotient.mk_lt_mk {α : Type u_1} {s : Setoid α} [LinearOrder α] [H : ∀ (x : Quotient s), (Quotient.mk s ⁻¹' {x}).OrdConnected] {x y : α} :
theorem Quotient.lt_of_mk_lt_mk {α : Type u_1} {s : Setoid α} [LinearOrder α] [H : ∀ (x : Quotient s), (Quotient.mk s ⁻¹' {x}).OrdConnected] {x y : α} (h : x < y) :
x < y