Functoriality of group homology #
Given a commutative ring k
, a group homomorphism f : G →* H
, a k
-linear G
-representation
A
, a k
-linear H
-representation B
, and a representation morphism A ⟶ Res(f)(B)
, we get
a chain map inhomogeneousChains A ⟶ inhomogeneousChains B
and hence maps on homology
Hₙ(G, A) ⟶ Hₙ(H, B)
.
We also provide extra API for these maps in degrees 0, 1, 2.
Main definitions #
groupHomology.chainsMap f φ
is the mapinhomogeneousChains A ⟶ inhomogeneousChains B
induced by a group homomorphismf : G →* H
and a representation morphismφ : A ⟶ Res(f)(B)
.groupHomology.map f φ n
is the mapHₙ(G, A) ⟶ Hₙ(H, B)
induced by a group homomorphismf : G →* H
and a representation morphismφ : A ⟶ Res(f)(B)
.
Given a group homomorphism f : G →* H
and a representation morphism φ : A ⟶ Res(f)(B)
,
this is the chain map sending ∑ aᵢ·gᵢ : Gⁿ →₀ A
to ∑ φ(aᵢ)·(f ∘ gᵢ) : Hⁿ →₀ B
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
Given a group homomorphism f : G →* H
and a representation morphism φ : A ⟶ Res(f)(B)
,
this is the induced map Zₙ(G, A) ⟶ Zₙ(H, B)
sending ∑ aᵢ·gᵢ : Gⁿ →₀ A
to
∑ φ(aᵢ)·(f ∘ gᵢ) : Hⁿ →₀ B
.
Equations
Instances For
Given a group homomorphism f : G →* H
and a representation morphism φ : A ⟶ Res(f)(B)
,
this is the induced map Hₙ(G, A) ⟶ Hₙ(H, B)
sending ∑ aᵢ·gᵢ : Gⁿ →₀ A
to
∑ φ(aᵢ)·(f ∘ gᵢ) : Hⁿ →₀ B
.
Equations
Instances For
Given a group homomorphism f : G →* H
and a representation morphism φ : A ⟶ Res(f)(B)
,
this is the induced map sending ∑ aᵢ·gᵢ : G →₀ A
to ∑ φ(aᵢ)·f(gᵢ) : H →₀ B
.
Equations
- groupHomology.chainsMap₁ f φ = ModuleCat.ofHom (Finsupp.mapRange.linearMap (ModuleCat.Hom.hom φ.hom) ∘ₗ Finsupp.lmapDomain (↑A.V) k ⇑f)
Instances For
Given a group homomorphism f : G →* H
and a representation morphism φ : A ⟶ Res(f)(B)
,
this is the induced map sending ∑ aᵢ·(gᵢ₁, gᵢ₂) : G × G →₀ A
to
∑ φ(aᵢ)·(f(gᵢ₁), f(gᵢ₂)) : H × H →₀ B
.
Equations
- groupHomology.chainsMap₂ f φ = ModuleCat.ofHom (Finsupp.mapRange.linearMap (ModuleCat.Hom.hom φ.hom) ∘ₗ Finsupp.lmapDomain (↑A.V) k (Prod.map ⇑f ⇑f))
Instances For
Given a group homomorphism f : G →* H
and a representation morphism φ : A ⟶ Res(f)(B)
,
this is the induced map sending ∑ aᵢ·(gᵢ₁, gᵢ₂, gᵢ₃) : G × G × G →₀ A
to
∑ φ(aᵢ)·(f(gᵢ₁), f(gᵢ₂), f(gᵢ₃)) : H × H × H →₀ B
.
Equations
- groupHomology.chainsMap₃ f φ = ModuleCat.ofHom (Finsupp.mapRange.linearMap (ModuleCat.Hom.hom φ.hom) ∘ₗ Finsupp.lmapDomain (↑A.V) k (Prod.map (⇑f) (Prod.map ⇑f ⇑f)))
Instances For
Given a group homomorphism f : G →* H
and a representation morphism φ : A ⟶ Res(f)(B)
,
this is the induced map from the short complex (G × G →₀ A) --d₂₁--> (G →₀ A) --d₁₀--> A
to (H × H →₀ B) --d₂₁--> (H →₀ B) --d₁₀--> B
.
Equations
- groupHomology.mapShortComplexH1 f φ = { τ₁ := groupHomology.chainsMap₂ f φ, τ₂ := groupHomology.chainsMap₁ f φ, τ₃ := φ.hom, comm₁₂ := ⋯, comm₂₃ := ⋯ }
Instances For
Given a group homomorphism f : G →* H
and a representation morphism φ : A ⟶ Res(f)(B)
,
this is the induced map Z₁(G, A) ⟶ Z₁(H, B)
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
Given a group homomorphism f : G →* H
and a representation morphism φ : A ⟶ Res(f)(B)
,
this is the induced map from the short complex
(G × G × G →₀ A) --d₃₂--> (G × G →₀ A) --d₂₁--> (G →₀ A)
to
(H × H × H →₀ B) --d₃₂--> (H × H →₀ B) --d₂₁--> (H →₀ B)
.
Equations
- groupHomology.mapShortComplexH2 f φ = { τ₁ := groupHomology.chainsMap₃ f φ, τ₂ := groupHomology.chainsMap₂ f φ, τ₃ := groupHomology.chainsMap₁ f φ, comm₁₂ := ⋯, comm₂₃ := ⋯ }
Instances For
Given a group homomorphism f : G →* H
and a representation morphism φ : A ⟶ Res(f)(B)
,
this is the induced map Z₂(G, A) ⟶ Z₂(H, B)
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
The functor sending a representation to its complex of inhomogeneous chains.
Equations
- One or more equations did not get rendered due to their size.
Instances For
The functor sending a G
-representation A
to Hₙ(G, A)
.
Equations
- groupHomology.functor k G n = { obj := fun (A : Rep k G) => groupHomology A n, map := fun {A B : Rep k G} (φ : A ⟶ B) => groupHomology.map (MonoidHom.id G) φ n, map_id := ⋯, map_comp := ⋯ }