Documentation

Mathlib.RepresentationTheory.Homological.GroupHomology.Functoriality

Functoriality of group homology #

Given a commutative ring k, a group homomorphism f : G →* H, a k-linear G-representation A, a k-linear H-representation B, and a representation morphism A ⟶ Res(f)(B), we get a chain map inhomogeneousChains A ⟶ inhomogeneousChains B and hence maps on homology Hₙ(G, A) ⟶ Hₙ(H, B).

Main definitions #

noncomputable def groupHomology.chainsMap {k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k G} {B : Rep k H} (f : G →* H) (φ : A (Action.res (ModuleCat k) f).obj B) [DecidableEq G] [DecidableEq H] :

Given a group homomorphism f : G →* H and a representation morphism φ : A ⟶ Res(f)(B), this is the chain map sending ∑ aᵢ·gᵢ : Gⁿ →₀ A to ∑ φ(aᵢ)·(f ∘ gᵢ) : Hⁿ →₀ B.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    theorem groupHomology.chainsMap_f_hom {k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k G} {B : Rep k H} (f : G →* H) (φ : A (Action.res (ModuleCat k) f).obj B) [DecidableEq G] [DecidableEq H] (i : ) :
    theorem groupHomology.chainsMap_f {k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k G} {B : Rep k H} (f : G →* H) (φ : A (Action.res (ModuleCat k) f).obj B) [DecidableEq G] [DecidableEq H] (i : ) :
    theorem groupHomology.chainsMap_f_single {k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k G} {B : Rep k H} (f : G →* H) (φ : A (Action.res (ModuleCat k) f).obj B) [DecidableEq G] [DecidableEq H] (n : ) (x : Fin nG) (a : A.V) :
    theorem groupHomology.chainsMap_comp {k : Type u} [CommRing k] {G H K : Type u} [Group G] [Group H] [Group K] [DecidableEq G] [DecidableEq H] [DecidableEq K] {A : Rep k G} {B : Rep k H} {C : Rep k K} (f : G →* H) (g : H →* K) (φ : A (Action.res (ModuleCat k) f).obj B) (ψ : B (Action.res (ModuleCat k) g).obj C) :
    @[simp]
    theorem groupHomology.chainsMap_zero {k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k G} {B : Rep k H} (f : G →* H) [DecidableEq G] [DecidableEq H] :
    chainsMap f 0 = 0
    theorem groupHomology.chainsMap_f_map_mono {k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k G} {B : Rep k H} (f : G →* H) (φ : A (Action.res (ModuleCat k) f).obj B) [DecidableEq G] [DecidableEq H] (hf : Function.Injective f) [CategoryTheory.Mono φ] (i : ) :
    theorem groupHomology.chainsMap_f_map_epi {k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k G} {B : Rep k H} (f : G →* H) (φ : A (Action.res (ModuleCat k) f).obj B) [DecidableEq G] [DecidableEq H] (hf : Function.Surjective f) [CategoryTheory.Epi φ] (i : ) :
    @[reducible, inline]
    noncomputable abbrev groupHomology.cyclesMap {k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k G} {B : Rep k H} (f : G →* H) (φ : A (Action.res (ModuleCat k) f).obj B) [DecidableEq G] [DecidableEq H] (n : ) :
    cycles A n cycles B n

    Given a group homomorphism f : G →* H and a representation morphism φ : A ⟶ Res(f)(B), this is the induced map Zₙ(G, A) ⟶ Zₙ(H, B) sending ∑ aᵢ·gᵢ : Gⁿ →₀ A to ∑ φ(aᵢ)·(f ∘ gᵢ) : Hⁿ →₀ B.

    Equations
    Instances For
      theorem groupHomology.cyclesMap_comp {k : Type u} [CommRing k] {G H K : Type u} [Group G] [DecidableEq G] [Group H] [DecidableEq H] [Group K] [DecidableEq K] {A : Rep k G} {B : Rep k H} {C : Rep k K} (f : G →* H) (g : H →* K) (φ : A (Action.res (ModuleCat k) f).obj B) (ψ : B (Action.res (ModuleCat k) g).obj C) (n : ) :
      theorem groupHomology.cyclesMap_comp_assoc {k : Type u} [CommRing k] {G H K : Type u} [Group G] [DecidableEq G] [Group H] [DecidableEq H] [Group K] [DecidableEq K] {A : Rep k G} {B : Rep k H} {C : Rep k K} (f : G →* H) (g : H →* K) (φ : A (Action.res (ModuleCat k) f).obj B) (ψ : B (Action.res (ModuleCat k) g).obj C) (n : ) {Z : ModuleCat k} (h : cycles C n Z) :
      @[reducible, inline]
      noncomputable abbrev groupHomology.map {k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k G} {B : Rep k H} (f : G →* H) (φ : A (Action.res (ModuleCat k) f).obj B) [DecidableEq G] [DecidableEq H] (n : ) :

      Given a group homomorphism f : G →* H and a representation morphism φ : A ⟶ Res(f)(B), this is the induced map Hₙ(G, A) ⟶ Hₙ(H, B) sending ∑ aᵢ·gᵢ : Gⁿ →₀ A to ∑ φ(aᵢ)·(f ∘ gᵢ) : Hⁿ →₀ B.

      Equations
      Instances For
        theorem groupHomology.π_map {k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k G} {B : Rep k H} (f : G →* H) (φ : A (Action.res (ModuleCat k) f).obj B) [DecidableEq G] [DecidableEq H] (n : ) :
        theorem groupHomology.map_comp {k : Type u} [CommRing k] {G H K : Type u} [Group G] [DecidableEq G] [Group H] [DecidableEq H] [Group K] [DecidableEq K] {A : Rep k G} {B : Rep k H} {C : Rep k K} (f : G →* H) (g : H →* K) (φ : A (Action.res (ModuleCat k) f).obj B) (ψ : B (Action.res (ModuleCat k) g).obj C) (n : ) :
        theorem groupHomology.map_comp_assoc {k : Type u} [CommRing k] {G H K : Type u} [Group G] [DecidableEq G] [Group H] [DecidableEq H] [Group K] [DecidableEq K] {A : Rep k G} {B : Rep k H} {C : Rep k K} (f : G →* H) (g : H →* K) (φ : A (Action.res (ModuleCat k) f).obj B) (ψ : B (Action.res (ModuleCat k) g).obj C) (n : ) {Z : ModuleCat k} (h : groupHomology C n Z) :
        theorem groupHomology.map_id_comp {k G : Type u} [CommRing k] [Group G] [DecidableEq G] {A B C : Rep k G} (φ : A B) (ψ : B C) (n : ) :