Irreducible representations #
This file defines irreducible monoid representations.
class
Representation.IsIrreducible
{G : Type u_1}
{k : Type u_2}
{V : Type u_3}
[Monoid G]
[Field k]
[AddCommGroup V]
[Module k V]
(ρ : Representation k G V)
extends IsSimpleOrder (Subrepresentation ρ) :
A representation ρ is irreducible if it is non-trivial and has no proper non-trivial
subrepresentations.
- exists_pair_ne : ∃ (x : Subrepresentation ρ) (y : Subrepresentation ρ), x ≠ y
Instances
theorem
Representation.isIrreducible_iff
{G : Type u_1}
{k : Type u_2}
{V : Type u_3}
[Monoid G]
[Field k]
[AddCommGroup V]
[Module k V]
(ρ : Representation k G V)
:
theorem
Representation.irreducible_iff_isSimpleModule_asModule
{G : Type u_1}
{k : Type u_2}
{V : Type u_3}
[Monoid G]
[Field k]
[AddCommGroup V]
[Module k V]
(ρ : Representation k G V)
:
theorem
Representation.is_simple_module_iff_irreducible_ofModule
{G : Type u_1}
{k : Type u_2}
[Monoid G]
[Field k]
(M : Type u_4)
[AddCommGroup M]
[Module (MonoidAlgebra k G) M]
: