Hausdorff-ness for noetherian rings #
theorem
IsHausdorff.of_le_jacobson
{R : Type u_1}
[CommRing R]
(I : Ideal R)
(M : Type u_2)
[AddCommGroup M]
[Module R M]
[IsNoetherianRing R]
[Module.Finite R M]
(h : I ≤ ⊥.jacobson)
:
IsHausdorff I M
theorem
IsHausdorff.of_isLocalRing
{R : Type u_1}
[CommRing R]
(I : Ideal R)
(M : Type u_2)
[AddCommGroup M]
[Module R M]
[IsNoetherianRing R]
[Module.Finite R M]
[IsLocalRing R]
(h : I ≠ ⊤)
:
IsHausdorff I M
instance
instIsHausdorffMaximalIdeal
{R : Type u_1}
[CommRing R]
(M : Type u_2)
[AddCommGroup M]
[Module R M]
[IsNoetherianRing R]
[Module.Finite R M]
[IsLocalRing R]
:
theorem
IsHausdorff.of_noZeroSMulDivisors
{R : Type u_1}
[CommRing R]
(I : Ideal R)
(M : Type u_2)
[AddCommGroup M]
[Module R M]
[IsNoetherianRing R]
[Module.Finite R M]
[NoZeroSMulDivisors R M]
(h : I ≠ ⊤)
:
IsHausdorff I M
theorem
IsHausdorff.of_isDomain
{R : Type u_1}
[CommRing R]
(I : Ideal R)
[IsNoetherianRing R]
[IsDomain R]
(h : I ≠ ⊤)
:
IsHausdorff I R