Bézout rings #
A Bézout ring (Bezout ring) is a ring whose finitely generated ideals are principal. Notable examples include principal ideal rings, valuation rings, and the ring of algebraic integers.
Main results #
IsBezout.iff_span_pair_isPrincipal
: It suffices to verify everyspan {x, y}
is principal.IsBezout.TFAE
: For a Bézout domain, noetherian ↔ PID ↔ UFD ↔ ACCP
theorem
IsBezout.iff_span_pair_isPrincipal
{R : Type u}
[CommRing R]
:
IsBezout R ↔ ∀ (x y : R), Submodule.IsPrincipal (Ideal.span {x, y})
theorem
Function.Surjective.isBezout
{R : Type u}
[CommRing R]
{S : Type v}
[CommRing S]
(f : R →+* S)
(hf : Surjective ⇑f)
[IsBezout R]
:
IsBezout S
theorem
IsBezout.TFAE
{R : Type u}
[CommRing R]
[IsBezout R]
[IsDomain R]
:
[IsNoetherianRing R, IsPrincipalIdealRing R, UniqueFactorizationMonoid R, WfDvdMonoid R].TFAE