Documentation

Mathlib.RingTheory.Bialgebra.MonoidAlgebra

The bialgebra structure on monoid algebras #

Given a monoid X, a commutative semiring R and an R-bialgebra A, this file collects results about the R-bialgebra instance on A[X] inherited from the corresponding structure on its coefficients, building upon results in Mathlib/RingTheory/Coalgebra/MonoidAlgebra.lean about the coalgebra structure.

Main definitions #

noncomputable instance MonoidAlgebra.instBialgebra (R : Type u_1) [CommSemiring R] (A : Type u_2) [Semiring A] (X : Type u_3) [Bialgebra R A] [Monoid X] :
Equations
noncomputable instance AddMonoidAlgebra.instBialgebra (R : Type u_1) [CommSemiring R] (A : Type u_2) [Semiring A] (X : Type u_3) [Bialgebra R A] [AddMonoid X] :
Equations
@[simp]
theorem LaurentPolynomial.comul_T {R : Type u_1} [CommSemiring R] {A : Type u_2} [Semiring A] [Bialgebra R A] (n : ) :
@[simp]
theorem LaurentPolynomial.counit_T {R : Type u_1} [CommSemiring R] {A : Type u_2} [Semiring A] [Bialgebra R A] (n : ) :