Documentation

Mathlib.RingTheory.Coalgebra.Convolution

Convolution product on linear maps from a coalgebra to an algebra #

This file constructs the ring structure on linear maps C → A where C is a coalgebra and A an algebra, where multiplication is given by (f * g)(x) = ∑ f x₍₁₎ * g x₍₂₎ in Sweedler notation or

         |
         μ
|   |   / \
f * g = f g
|   |   \ /
         δ
         |

diagrammatically, where μ stands for multiplication and δ for comultiplication.

Implementation notes #

Note that in the case C = A this convolution product conflicts with the (unfortunately global!) group instance on Module.End R A with multiplication defined as composition. As a result, the convolution product is scoped to ConvolutionProduct.

@[reducible, inline]
noncomputable abbrev LinearMap.convMul {R : Type u_1} {A : Type u_2} {C : Type u_4} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [SMulCommClass R A A] [IsScalarTower R A A] [AddCommMonoid C] [Module R C] [CoalgebraStruct R C] :
Mul (C →ₗ[R] A)

Convolution product on linear maps from a coalgebra to an algebra.

Equations
Instances For
    @[simp]
    theorem LinearMap.convMul_apply {R : Type u_1} {A : Type u_2} {C : Type u_4} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [SMulCommClass R A A] [IsScalarTower R A A] [AddCommMonoid C] [Module R C] [CoalgebraStruct R C] (f g : C →ₗ[R] A) (c : C) :
    (f * g) c = (mul' R A) ((TensorProduct.map f g) (CoalgebraStruct.comul c))
    theorem Coalgebra.Repr.convMul_apply {R : Type u_1} {A : Type u_2} {C : Type u_4} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [SMulCommClass R A A] [IsScalarTower R A A] [AddCommMonoid C] [Module R C] [CoalgebraStruct R C] {a : C} (𝓡 : Repr R a) (f g : C →ₗ[R] A) :
    (f * g) a = i𝓡.index, f (𝓡.left i) * g (𝓡.right i)
    @[reducible, inline]

    Non-unital and non-associative convolution semiring structure on linear maps from a coalgebra to a non-unital non-associative algebra.

    Equations
    Instances For
      theorem TensorProduct.map_convMul_map {R : Type u_1} {A : Type u_2} {B : Type u_3} {C : Type u_4} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [SMulCommClass R A A] [IsScalarTower R A A] [AddCommMonoid C] [Module R C] [CoalgebraStruct R C] {D : Type u_5} [AddCommMonoid B] [Module R B] [CoalgebraStruct R B] [NonUnitalNonAssocSemiring D] [Module R D] [SMulCommClass R D D] [IsScalarTower R D D] {f h : C →ₗ[R] A} {g k : B →ₗ[R] D} :
      map f g * map h k = map (f * h) (g * k)
      @[reducible, inline]
      noncomputable abbrev LinearMap.convNonUnitalNonAssocRing {R : Type u_1} {A : Type u_2} {C : Type u_4} [CommSemiring R] [NonUnitalNonAssocRing A] [Module R A] [SMulCommClass R A A] [IsScalarTower R A A] [AddCommMonoid C] [Module R C] [CoalgebraStruct R C] :

      Non-unital and non-associative convolution ring structure on linear maps from a coalgebra to a non-unital and non-associative algebra.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        theorem LinearMap.nonUnitalAlgHom_comp_convMul_distrib {R : Type u_1} {A : Type u_2} {B : Type u_3} {C : Type u_4} [CommSemiring R] [NonUnitalSemiring A] [Module R A] [SMulCommClass R A A] [IsScalarTower R A A] [AddCommMonoid C] [Module R C] [Coalgebra R C] [NonUnitalNonAssocSemiring B] [Module R B] [SMulCommClass R B B] [IsScalarTower R B B] (h : A →ₙₐ[R] B) (f g : C →ₗ[R] A) :
        h ∘ₗ (f * g) = h ∘ₗ f * h ∘ₗ g
        theorem LinearMap.convMul_comp_coalgHom_distrib {R : Type u_1} {A : Type u_2} {B : Type u_3} {C : Type u_4} [CommSemiring R] [NonUnitalSemiring A] [Module R A] [SMulCommClass R A A] [IsScalarTower R A A] [AddCommMonoid C] [Module R C] [Coalgebra R C] [AddCommMonoid B] [Module R B] [CoalgebraStruct R B] (f g : C →ₗ[R] A) (h : B →ₗc[R] C) :
        @[reducible, inline]
        noncomputable abbrev LinearMap.convNonUnitalSemiring {R : Type u_1} {A : Type u_2} {C : Type u_4} [CommSemiring R] [NonUnitalSemiring A] [Module R A] [SMulCommClass R A A] [IsScalarTower R A A] [AddCommMonoid C] [Module R C] [Coalgebra R C] :

        Non-unital convolution semiring structure on linear maps from a coalgebra to a non-unital algebra.

        Equations
        Instances For
          @[reducible, inline]
          noncomputable abbrev LinearMap.convNonUnitalRing {R : Type u_1} {A : Type u_2} {C : Type u_4} [CommSemiring R] [NonUnitalRing A] [AddCommMonoid C] [Module R A] [SMulCommClass R A A] [IsScalarTower R A A] [Module R C] [Coalgebra R C] :

          Non-unital convolution ring structure on linear maps from a coalgebra to a non-unital algebra.

          Equations
          Instances For
            theorem LinearMap.algHom_comp_convMul_distrib {R : Type u_1} {A : Type u_2} {B : Type u_3} {C : Type u_4} [CommSemiring R] [Semiring A] [Algebra R A] [Semiring B] [Algebra R B] [AddCommMonoid C] [Module R C] [CoalgebraStruct R C] (h : A →ₐ[R] B) (f g : C →ₗ[R] A) :
            @[reducible, inline]
            noncomputable abbrev LinearMap.convOne {R : Type u_1} {A : Type u_2} {C : Type u_4} [CommSemiring R] [Semiring A] [Algebra R A] [AddCommMonoid C] [Module R C] [Coalgebra R C] :
            One (C →ₗ[R] A)

            Convolution unit on linear maps from a coalgebra to an algebra.

            Equations
            Instances For
              @[simp]
              theorem LinearMap.convOne_apply {R : Type u_1} {A : Type u_2} {C : Type u_4} [CommSemiring R] [Semiring A] [Algebra R A] [AddCommMonoid C] [Module R C] [Coalgebra R C] (c : C) :
              @[reducible, inline]
              noncomputable abbrev LinearMap.convSemiring {R : Type u_1} {A : Type u_2} {C : Type u_4} [CommSemiring R] [Semiring A] [Algebra R A] [AddCommMonoid C] [Module R C] [Coalgebra R C] :

              Convolution semiring structure on linear maps from a coalgebra to an algebra.

              Equations
              • One or more equations did not get rendered due to their size.
              Instances For
                @[reducible, inline]
                noncomputable abbrev LinearMap.convCommSemiring {R : Type u_1} {A : Type u_2} {C : Type u_4} [CommSemiring R] [CommSemiring A] [AddCommMonoid C] [Algebra R A] [Module R C] [Coalgebra R C] [Coalgebra.IsCocomm R C] :

                Commutative convolution semiring structure on linear maps from a cocommutative coalgebra to an algebra.

                Equations
                Instances For
                  @[reducible, inline]
                  noncomputable abbrev LinearMap.convRing {R : Type u_1} {A : Type u_2} {C : Type u_4} [CommSemiring R] [Ring A] [AddCommMonoid C] [Algebra R A] [Module R C] [Coalgebra R C] :
                  Ring (C →ₗ[R] A)

                  Convolution ring structure on linear maps from a coalgebra to an algebra.

                  Equations
                  • One or more equations did not get rendered due to their size.
                  Instances For
                    @[reducible, inline]
                    noncomputable abbrev LinearMap.convCommRing {R : Type u_1} {A : Type u_2} {C : Type u_4} [CommSemiring R] [CommRing A] [AddCommMonoid C] [Algebra R A] [Module R C] [Coalgebra R C] [Coalgebra.IsCocomm R C] :

                    Commutative convolution ring structure on linear maps from a cocommutative coalgebra to an algebra.

                    Equations
                    Instances For