Results #
derivationToSquareZeroOfLift
: TheR
-derivations fromA
into a square-zero idealI
ofB
corresponds to the liftsA →ₐ[R] B
of the mapA →ₐ[R] B ⧸ I
.
def
diffToIdealOfQuotientCompEq
{R : Type u}
{A : Type v}
{B : Type w}
[CommSemiring R]
[CommSemiring A]
[CommRing B]
[Algebra R A]
[Algebra R B]
(I : Ideal B)
(f₁ f₂ : A →ₐ[R] B)
(e : (Ideal.Quotient.mkₐ R I).comp f₁ = (Ideal.Quotient.mkₐ R I).comp f₂)
:
If f₁ f₂ : A →ₐ[R] B
are two lifts of the same A →ₐ[R] B ⧸ I
,
we may define a map f₁ - f₂ : A →ₗ[R] I
.
Equations
- diffToIdealOfQuotientCompEq I f₁ f₂ e = LinearMap.codRestrict (Submodule.restrictScalars R I) (f₁.toLinearMap - f₂.toLinearMap) ⋯
Instances For
@[simp]
theorem
diffToIdealOfQuotientCompEq_apply
{R : Type u}
{A : Type v}
{B : Type w}
[CommSemiring R]
[CommSemiring A]
[CommRing B]
[Algebra R A]
[Algebra R B]
(I : Ideal B)
(f₁ f₂ : A →ₐ[R] B)
(e : (Ideal.Quotient.mkₐ R I).comp f₁ = (Ideal.Quotient.mkₐ R I).comp f₂)
(x : A)
:
↑((diffToIdealOfQuotientCompEq I f₁ f₂ e) x) = f₁ x - f₂ x
def
derivationToSquareZeroOfLift
{R : Type u}
{A : Type v}
{B : Type w}
[CommSemiring R]
[CommSemiring A]
[CommRing B]
[Algebra R A]
[Algebra R B]
(I : Ideal B)
[Algebra A B]
[IsScalarTower R A B]
(hI : I ^ 2 = ⊥)
(f : A →ₐ[R] B)
(e : (Ideal.Quotient.mkₐ R I).comp f = IsScalarTower.toAlgHom R A (B ⧸ I))
:
Derivation R A ↥I
Given a tower of algebras R → A → B
, and a square-zero I : Ideal B
, each lift A →ₐ[R] B
of the canonical map A →ₐ[R] B ⧸ I
corresponds to an R
-derivation from A
to I
.
Equations
- derivationToSquareZeroOfLift I hI f e = { toLinearMap := diffToIdealOfQuotientCompEq I f (IsScalarTower.toAlgHom R A B) ⋯, map_one_eq_zero' := ⋯, leibniz' := ⋯ }
Instances For
theorem
derivationToSquareZeroOfLift_apply
{R : Type u}
{A : Type v}
{B : Type w}
[CommSemiring R]
[CommSemiring A]
[CommRing B]
[Algebra R A]
[Algebra R B]
(I : Ideal B)
[Algebra A B]
(hI : I ^ 2 = ⊥)
[IsScalarTower R A B]
(f : A →ₐ[R] B)
(e : (Ideal.Quotient.mkₐ R I).comp f = IsScalarTower.toAlgHom R A (B ⧸ I))
(x : A)
:
↑((derivationToSquareZeroOfLift I hI f e) x) = f x - (algebraMap A B) x
def
liftOfDerivationToSquareZero
{R : Type u}
{A : Type v}
{B : Type w}
[CommSemiring R]
[CommSemiring A]
[CommRing B]
[Algebra R A]
[Algebra R B]
(I : Ideal B)
[Algebra A B]
[IsScalarTower R A B]
(hI : I ^ 2 = ⊥)
(f : Derivation R A ↥I)
:
Given a tower of algebras R → A → B
, and a square-zero I : Ideal B
, each R
-derivation
from A
to I
corresponds to a lift A →ₐ[R] B
of the canonical map A →ₐ[R] B ⧸ I
.
Equations
- liftOfDerivationToSquareZero I hI f = { toFun := fun (x : A) => ↑(f x) + (algebraMap A B) x, map_one' := ⋯, map_mul' := ⋯, map_zero' := ⋯, map_add' := ⋯, commutes' := ⋯ }
Instances For
theorem
liftOfDerivationToSquareZero_apply
{R : Type u}
{A : Type v}
{B : Type w}
[CommSemiring R]
[CommSemiring A]
[CommRing B]
[Algebra R A]
[Algebra R B]
(I : Ideal B)
[Algebra A B]
[IsScalarTower R A B]
(hI : I ^ 2 = ⊥)
(f : Derivation R A ↥I)
(x : A)
:
(liftOfDerivationToSquareZero I hI f) x = ↑(f x) + (algebraMap A B) x
theorem
liftOfDerivationToSquareZero_mk_apply
{R : Type u}
{A : Type v}
{B : Type w}
[CommSemiring R]
[CommSemiring A]
[CommRing B]
[Algebra R A]
[Algebra R B]
(I : Ideal B)
[Algebra A B]
(hI : I ^ 2 = ⊥)
[IsScalarTower R A B]
(d : Derivation R A ↥I)
(x : A)
:
(Ideal.Quotient.mk I) ((liftOfDerivationToSquareZero I hI d) x) = (algebraMap A (B ⧸ I)) x
@[simp]
theorem
liftOfDerivationToSquareZero_mk_apply'
{R : Type u}
{A : Type v}
{B : Type w}
[CommSemiring R]
[CommSemiring A]
[CommRing B]
[Algebra R A]
[Algebra R B]
(I : Ideal B)
[Algebra A B]
(d : Derivation R A ↥I)
(x : A)
:
(Ideal.Quotient.mk I) ↑(d x) + (algebraMap A (B ⧸ I)) x = (algebraMap A (B ⧸ I)) x
def
derivationToSquareZeroEquivLift
{R : Type u}
{A : Type v}
{B : Type w}
[CommSemiring R]
[CommSemiring A]
[CommRing B]
[Algebra R A]
[Algebra R B]
(I : Ideal B)
[Algebra A B]
(hI : I ^ 2 = ⊥)
[IsScalarTower R A B]
:
Derivation R A ↥I ≃ { f : A →ₐ[R] B // (Ideal.Quotient.mkₐ R I).comp f = IsScalarTower.toAlgHom R A (B ⧸ I) }
Given a tower of algebras R → A → B
, and a square-zero I : Ideal B
,
there is a 1-1 correspondence between R
-derivations from A
to I
and
lifts A →ₐ[R] B
of the canonical map A →ₐ[R] B ⧸ I
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
derivationToSquareZeroEquivLift_apply_coe_apply
{R : Type u}
{A : Type v}
{B : Type w}
[CommSemiring R]
[CommSemiring A]
[CommRing B]
[Algebra R A]
[Algebra R B]
(I : Ideal B)
[Algebra A B]
(hI : I ^ 2 = ⊥)
[IsScalarTower R A B]
(d : Derivation R A ↥I)
(x : A)
:
↑((derivationToSquareZeroEquivLift I hI) d) x = ↑(d x) + (algebraMap A B) x
@[simp]
theorem
derivationToSquareZeroEquivLift_symm_apply_apply_coe
{R : Type u}
{A : Type v}
{B : Type w}
[CommSemiring R]
[CommSemiring A]
[CommRing B]
[Algebra R A]
[Algebra R B]
(I : Ideal B)
[Algebra A B]
(hI : I ^ 2 = ⊥)
[IsScalarTower R A B]
(f : { f : A →ₐ[R] B // (Ideal.Quotient.mkₐ R I).comp f = IsScalarTower.toAlgHom R A (B ⧸ I) })
(c : A)
:
↑(((derivationToSquareZeroEquivLift I hI).symm f) c) = ↑f c - (algebraMap A B) c