Ideal of ℤ
#
We prove results about ideals of ℤ
or ideals of extensions of ℤ
.
In particular, for I
an ideal of a ring R
extending ℤ
, we prove several results about
absNorm (under ℤ I)
which is the smallest positive integer contained in I
.
Main definitions and results #
Int.ideal_span_isMaximal_of_prime
: the ideal generated by a prime number is maximal.Int.liesOver_span_absNorm
: the ideal generated byabsNorm (under ℤ I)
lies underI
.Int.absNorm_under_eq_sInf
: the predicate that theabsNorm (under ℤ I)
is the smallest positive integer inI
.Int.absNorm_under_dvd_absNorm
:absNorm (under ℤ I)
divides the norm ofI
.Nat.absNorm_under_prime
: IfP
is a prime ideal, thenabsNorm (under ℤ P)
is a prime number.
instance
Int.ideal_span_isMaximal_of_prime
(p : ℕ)
[Fact (Nat.Prime p)]
:
(Ideal.span {↑p}).IsMaximal
instance
Int.liesOver_span_absNorm
{R : Type u_1}
[Ring R]
(I : Ideal R)
:
I.LiesOver (Ideal.span {↑(Ideal.absNorm (Ideal.under ℤ I))})
theorem
Int.absNorm_under_dvd_absNorm
{S : Type u_2}
[CommRing S]
[IsDedekindDomain S]
[Module.Free ℤ S]
(I : Ideal S)
:
theorem
Nat.absNorm_under_prime
{R : Type u_1}
[CommRing R]
[IsDomain R]
[Algebra.IsIntegral ℤ R]
(P : Ideal R)
[P.IsPrime]
[NeZero P]
:
Prime (Ideal.absNorm (Ideal.under ℤ P))