Ideal of ℤ
#
We prove results about ideals of ℤ
or ideals of extensions of ℤ
.
In particular, for I
an ideal of a ring R
extending ℤ
, we prove several results about
absNorm (under ℤ I)
which is the smallest positive integer contained in I
.
Main definitions and results #
Int.ideal_span_isMaximal_of_prime
: the ideal generated by a prime number is maximal.Int.absNorm_under_eq_sInf
: the predicate that theabsNorm (under ℤ I)
is the smallest positive integer inI
.Int.absNorm_under_dvd_absNorm
:absNorm (under ℤ I)
divides the norm ofI
.
instance
Int.ideal_span_isMaximal_of_prime
(p : ℕ)
[Fact (Nat.Prime p)]
:
(Ideal.span {↑p}).IsMaximal
theorem
Int.absNorm_under_dvd_absNorm
{S : Type u_2}
[CommRing S]
[IsDedekindDomain S]
[Module.Free ℤ S]
(I : Ideal S)
: