Documentation

Mathlib.RingTheory.Kaehler.Polynomial

The Kaehler differential module of polynomial algebras #

The relative differential module of a polynomial algebra R[σ] is the free module generated by { dx | x ∈ σ }. Also see KaehlerDifferential.mvPolynomialBasis.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    noncomputable def KaehlerDifferential.mvPolynomialBasis (R : Type u) [CommRing R] (σ : Type u_1) :

    { dx | x ∈ σ } forms a basis of the relative differential module of a polynomial algebra R[σ].

    Equations
    Instances For
      theorem KaehlerDifferential.mvPolynomialBasis_repr_comp_D (R : Type u) [CommRing R] (σ : Type u_1) :
      (↑(mvPolynomialBasis R σ).repr).compDer (D R (MvPolynomial σ R)) = MvPolynomial.mkDerivation R fun (x : σ) => Finsupp.single x 1
      theorem KaehlerDifferential.mvPolynomialBasis_repr_D (R : Type u) [CommRing R] (σ : Type u_1) (x : MvPolynomial σ R) :
      (mvPolynomialBasis R σ).repr ((D R (MvPolynomial σ R)) x) = (MvPolynomial.mkDerivation R fun (x : σ) => Finsupp.single x 1) x
      @[simp]
      theorem KaehlerDifferential.mvPolynomialBasis_repr_D_X (R : Type u) [CommRing R] (σ : Type u_1) (i : σ) :
      @[simp]
      theorem KaehlerDifferential.mvPolynomialBasis_repr_apply (R : Type u) [CommRing R] (σ : Type u_1) (x : MvPolynomial σ R) (i : σ) :
      ((mvPolynomialBasis R σ).repr ((D R (MvPolynomial σ R)) x)) i = (MvPolynomial.pderiv i) x
      theorem KaehlerDifferential.mvPolynomialBasis_repr_symm_single (R : Type u) [CommRing R] (σ : Type u_1) (i : σ) (x : MvPolynomial σ R) :
      (mvPolynomialBasis R σ).repr.symm (Finsupp.single i x) = x (D R (MvPolynomial σ R)) (MvPolynomial.X i)
      @[simp]
      theorem KaehlerDifferential.mvPolynomialBasis_apply (R : Type u) [CommRing R] (σ : Type u_1) (i : σ) :
      theorem KaehlerDifferential.polynomial_D_apply (R : Type u) [CommRing R] (P : Polynomial R) :
      (D R (Polynomial R)) P = Polynomial.derivative P (D R (Polynomial R)) Polynomial.X

      The relative differential module of the univariate polynomial algebra R[X] is isomorphic to R[X] as an R[X]-module.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        @[simp]
        theorem KaehlerDifferential.polynomialEquiv_D (R : Type u) [CommRing R] (P : Polynomial R) :
        (polynomialEquiv R) ((D R (Polynomial R)) P) = Polynomial.derivative P