Results about coefficients of polynomials being integral #
Main results #
Polynomial.isIntegral_coeff_of_dvd: If a monic polynomialpdivides another monic polynomial with integral coefficients, then the coefficients ofpare themselves integral.Polynomial.isIntegral_iff_isIntegral_coeff:p : S[X]is integral overR[X]iff the coefficients ofpare integral overR.MvPolynomial.isIntegral_iff_isIntegral_coeff:p : MvPolynomial σ Sis integral overMvPolynomial σ Riff the coefficients ofpare integral overR.- We also provide the instance
[IsIntegrallyClosed R] : IsIntegrallyClosed R[X].
theorem
Polynomial.isIntegral_coeff_prod
{R : Type u_1}
{S : Type u_2}
{ι : Type u_3}
[CommRing R]
[CommRing S]
[Algebra R S]
(s : Finset ι)
(p : ι → Polynomial S)
(H : ∀ i ∈ s, ∀ (j : ℕ), IsIntegral R ((p i).coeff j))
(j : ℕ)
:
IsIntegral R ((s.prod p).coeff j)
theorem
Polynomial.isIntegral_coeff_of_factors
{R : Type u_1}
{S : Type u_2}
[CommRing R]
[CommRing S]
[Algebra R S]
(p : Polynomial S)
(hpmon : IsIntegral R p.leadingCoeff)
(hp : p.Splits)
(hpr : ∀ (x : S), p.IsRoot x → IsIntegral R x)
(i : ℕ)
:
IsIntegral R (p.coeff i)
theorem
Polynomial.isIntegral_coeff_of_dvd
{R : Type u_1}
{S : Type u_2}
[CommRing R]
[CommRing S]
[Algebra R S]
(p : Polynomial R)
(q : Polynomial S)
(hp : p.Monic)
(hq : q.Monic)
(H : q ∣ map (algebraMap R S) p)
(i : ℕ)
:
IsIntegral R (q.coeff i)
Stacks Tag 00H6 ((1))
theorem
IsAlmostIntegral.coeff
{R : Type u_1}
{S : Type u_2}
[CommRing R]
[CommRing S]
[Algebra R S]
[IsDomain R]
[FaithfulSMul R S]
{p : Polynomial S}
(hp : IsAlmostIntegral (Polynomial R) p)
(i : ℕ)
:
IsAlmostIntegral R (p.coeff i)
Stacks Tag 00H0 ((1))
theorem
IsIntegral.coeff
{R : Type u_1}
{S : Type u_2}
[CommRing R]
[CommRing S]
[Algebra R S]
{p : Polynomial S}
(hp : IsIntegral (Polynomial R) p)
(i : ℕ)
:
IsIntegral R (p.coeff i)
Stacks Tag 00H0 ((2))
@[deprecated IsIntegral.coeff (since := "2026-01-01")]
theorem
IsIntegral.coeff_of_exists_smul_mem_lifts
{R : Type u_1}
{S : Type u_2}
[CommRing R]
[CommRing S]
[Algebra R S]
{p : Polynomial S}
(hp : IsIntegral (Polynomial R) p)
(i : ℕ)
:
IsIntegral R (p.coeff i)
Alias of IsIntegral.coeff.
Stacks Tag 00H0 ((2))
@[deprecated IsIntegral.coeff (since := "2026-01-01")]
theorem
IsIntegral.coeff_of_isFractionRing
{R : Type u_1}
{S : Type u_2}
[CommRing R]
[CommRing S]
[Algebra R S]
{p : Polynomial S}
(hp : IsIntegral (Polynomial R) p)
(i : ℕ)
:
IsIntegral R (p.coeff i)
Alias of IsIntegral.coeff.
Stacks Tag 00H0 ((2))
theorem
Polynomial.isIntegral_iff_isIntegral_coeff
{R : Type u_1}
{S : Type u_2}
[CommRing R]
[CommRing S]
[Algebra R S]
{f : Polynomial S}
:
theorem
IsIntegral.of_aeval_monic_of_isIntegral_coeff
{R : Type u_4}
{A : Type u_5}
[CommRing R]
[CommRing A]
[Algebra R A]
{x : A}
{p : Polynomial A}
(monic : p.Monic)
(deg : p.natDegree ≠ 0)
(hx : IsIntegral R (Polynomial.eval x p))
(hp : ∀ (i : ℕ), IsIntegral R (p.coeff i))
:
IsIntegral R x
instance
instIsIntegrallyClosedPolynomialOfIsDomain
{R : Type u_4}
[CommRing R]
[IsDomain R]
[IsIntegrallyClosed R]
:
theorem
MvPolynomial.isIntegral_iff_isIntegral_coeff
{R : Type u_1}
{S : Type u_2}
[CommRing R]
[CommRing S]
[Algebra R S]
{σ : Type w}
{f : MvPolynomial σ S}
: