Radical of an element of a unique factorization normalization monoid #
This file defines a radical of an element a
of a unique factorization normalization
monoid, which is defined as a product of normalized prime factors of a
without duplication.
This is different from the radical of an ideal.
Main declarations #
radical
: The radical of an elementa
in a unique factorization monoid is the product of its prime factors.radical_eq_of_associated
: Ifa
andb
are associates, i.e.a * u = b
for some unitu
, thenradical a = radical b
.radical_unit_mul
: Multiplying unit does not change the radical.radical_dvd_self
:radical a
dividesa
.radical_pow
:radical (a ^ n) = radical a
for anyn ≥ 1
radical_of_prime
: Radical of a prime element is equal to its normalizationradical_pow_of_prime
: Radical of a power of prime element is equal to its normalization
For unique factorization domains #
radical_mul
: Radical is multiplicative for coprime elements.
For Euclidean domains #
EuclideanDomain.divRadical
: For an elementa
in an Euclidean domain,a / radical a
.EuclideanDomain.divRadical_mul
:divRadical
of a product is the product ofdivRadical
s.IsCoprime.divRadical
:divRadical
of coprime elements are coprime.
TODO #
- Make a comparison with
Ideal.radical
. Especially, for principal ideal,Ideal.radical (Ideal.span {a}) = Ideal.span {radical a}
. - Prove
radical (radical a) = radical a
. - Prove a comparison between
primeFactors
andNat.primeFactors
.
def
UniqueFactorizationMonoid.primeFactors
{M : Type u_1}
[CancelCommMonoidWithZero M]
[NormalizationMonoid M]
[UniqueFactorizationMonoid M]
(a : M)
:
Finset M
The finite set of prime factors of an element in a unique factorization monoid.
Equations
Instances For
theorem
Associated.primeFactors_eq
{M : Type u_1}
[CancelCommMonoidWithZero M]
[NormalizationMonoid M]
[UniqueFactorizationMonoid M]
{a b : M}
(h : Associated a b)
:
def
UniqueFactorizationMonoid.radical
{M : Type u_1}
[CancelCommMonoidWithZero M]
[NormalizationMonoid M]
[UniqueFactorizationMonoid M]
(a : M)
:
M
Radical of an element a
in a unique factorization monoid is the product of
the prime factors of a
.
Equations
Instances For
@[simp]
theorem
UniqueFactorizationMonoid.radical_zero_eq
{M : Type u_1}
[CancelCommMonoidWithZero M]
[NormalizationMonoid M]
[UniqueFactorizationMonoid M]
:
@[simp]
theorem
UniqueFactorizationMonoid.radical_one_eq
{M : Type u_1}
[CancelCommMonoidWithZero M]
[NormalizationMonoid M]
[UniqueFactorizationMonoid M]
:
theorem
UniqueFactorizationMonoid.radical_eq_of_associated
{M : Type u_1}
[CancelCommMonoidWithZero M]
[NormalizationMonoid M]
[UniqueFactorizationMonoid M]
{a b : M}
(h : Associated a b)
:
theorem
UniqueFactorizationMonoid.radical_of_isUnit
{M : Type u_1}
[CancelCommMonoidWithZero M]
[NormalizationMonoid M]
[UniqueFactorizationMonoid M]
{a : M}
(h : IsUnit a)
:
theorem
UniqueFactorizationMonoid.radical_mul_of_isUnit_left
{M : Type u_1}
[CancelCommMonoidWithZero M]
[NormalizationMonoid M]
[UniqueFactorizationMonoid M]
{a u : M}
(h : IsUnit u)
:
theorem
UniqueFactorizationMonoid.radical_mul_of_isUnit_right
{M : Type u_1}
[CancelCommMonoidWithZero M]
[NormalizationMonoid M]
[UniqueFactorizationMonoid M]
{a u : M}
(h : IsUnit u)
:
theorem
UniqueFactorizationMonoid.primeFactors_pow
{M : Type u_1}
[CancelCommMonoidWithZero M]
[NormalizationMonoid M]
[UniqueFactorizationMonoid M]
(a : M)
{n : ℕ}
(hn : 0 < n)
:
primeFactors (a ^ n) = primeFactors a
theorem
UniqueFactorizationMonoid.radical_pow
{M : Type u_1}
[CancelCommMonoidWithZero M]
[NormalizationMonoid M]
[UniqueFactorizationMonoid M]
(a : M)
{n : ℕ}
(hn : 0 < n)
:
theorem
UniqueFactorizationMonoid.radical_dvd_self
{M : Type u_1}
[CancelCommMonoidWithZero M]
[NormalizationMonoid M]
[UniqueFactorizationMonoid M]
(a : M)
:
theorem
UniqueFactorizationMonoid.radical_of_prime
{M : Type u_1}
[CancelCommMonoidWithZero M]
[NormalizationMonoid M]
[UniqueFactorizationMonoid M]
{a : M}
(ha : Prime a)
:
theorem
UniqueFactorizationMonoid.radical_pow_of_prime
{M : Type u_1}
[CancelCommMonoidWithZero M]
[NormalizationMonoid M]
[UniqueFactorizationMonoid M]
{a : M}
(ha : Prime a)
{n : ℕ}
(hn : 0 < n)
:
theorem
UniqueFactorizationMonoid.radical_ne_zero
{M : Type u_1}
[CancelCommMonoidWithZero M]
[NormalizationMonoid M]
[UniqueFactorizationMonoid M]
(a : M)
[Nontrivial M]
:
theorem
UniqueFactorizationDomain.disjoint_normalizedFactors
{R : Type u_1}
[CommRing R]
[IsDomain R]
[NormalizationMonoid R]
[UniqueFactorizationMonoid R]
{a b : R}
(hc : IsCoprime a b)
:
Coprime elements have disjoint prime factors (as multisets).
theorem
UniqueFactorizationDomain.disjoint_primeFactors
{R : Type u_1}
[CommRing R]
[IsDomain R]
[NormalizationMonoid R]
[UniqueFactorizationMonoid R]
{a b : R}
(hc : IsCoprime a b)
:
Coprime elements have disjoint prime factors (as finsets).
theorem
UniqueFactorizationDomain.mul_primeFactors_disjUnion
{R : Type u_1}
[CommRing R]
[IsDomain R]
[NormalizationMonoid R]
[UniqueFactorizationMonoid R]
{a b : R}
(ha : a ≠ 0)
(hb : b ≠ 0)
(hc : IsCoprime a b)
:
UniqueFactorizationMonoid.primeFactors (a * b) = (UniqueFactorizationMonoid.primeFactors a).disjUnion (UniqueFactorizationMonoid.primeFactors b) ⋯
@[simp]
theorem
UniqueFactorizationDomain.radical_neg_one
{R : Type u_1}
[CommRing R]
[IsDomain R]
[NormalizationMonoid R]
[UniqueFactorizationMonoid R]
:
theorem
UniqueFactorizationDomain.radical_mul
{R : Type u_1}
[CommRing R]
[IsDomain R]
[NormalizationMonoid R]
[UniqueFactorizationMonoid R]
{a b : R}
(hc : IsCoprime a b)
:
Radical is multiplicative for coprime elements.
theorem
UniqueFactorizationDomain.radical_neg
{R : Type u_1}
[CommRing R]
[IsDomain R]
[NormalizationMonoid R]
[UniqueFactorizationMonoid R]
{a : R}
:
def
EuclideanDomain.divRadical
{E : Type u_1}
[EuclideanDomain E]
[NormalizationMonoid E]
[UniqueFactorizationMonoid E]
(a : E)
:
E
Division of an element by its radical in an Euclidean domain.
Equations
Instances For
theorem
EuclideanDomain.radical_mul_divRadical
{E : Type u_1}
[EuclideanDomain E]
[NormalizationMonoid E]
[UniqueFactorizationMonoid E]
(a : E)
:
theorem
EuclideanDomain.divRadical_mul_radical
{E : Type u_1}
[EuclideanDomain E]
[NormalizationMonoid E]
[UniqueFactorizationMonoid E]
(a : E)
:
theorem
EuclideanDomain.divRadical_ne_zero
{E : Type u_1}
[EuclideanDomain E]
[NormalizationMonoid E]
[UniqueFactorizationMonoid E]
{a : E}
(ha : a ≠ 0)
:
divRadical a ≠ 0
theorem
EuclideanDomain.divRadical_isUnit
{E : Type u_1}
[EuclideanDomain E]
[NormalizationMonoid E]
[UniqueFactorizationMonoid E]
{u : E}
(hu : IsUnit u)
:
IsUnit (divRadical u)
theorem
EuclideanDomain.eq_divRadical
{E : Type u_1}
[EuclideanDomain E]
[NormalizationMonoid E]
[UniqueFactorizationMonoid E]
{a x : E}
(h : UniqueFactorizationMonoid.radical a * x = a)
:
x = divRadical a
theorem
EuclideanDomain.divRadical_mul
{E : Type u_1}
[EuclideanDomain E]
[NormalizationMonoid E]
[UniqueFactorizationMonoid E]
{a b : E}
(hab : IsCoprime a b)
:
divRadical (a * b) = divRadical a * divRadical b
theorem
EuclideanDomain.divRadical_dvd_self
{E : Type u_1}
[EuclideanDomain E]
[NormalizationMonoid E]
[UniqueFactorizationMonoid E]
(a : E)
:
divRadical a ∣ a
theorem
IsCoprime.divRadical
{E : Type u_1}
[EuclideanDomain E]
[NormalizationMonoid E]
[UniqueFactorizationMonoid E]
{a b : E}
(h : IsCoprime a b)
: