Categorical constructions for IsSMulRegular
#
theorem
LinearMap.exact_smul_id_smul_top_mkQ
{R : Type u}
[CommRing R]
(M : Type v)
[AddCommGroup M]
[Module R M]
(r : R)
:
The short (exact) complex M → M → M⧸xM
obtain from the scalar multiple of x : R
on M
.
Equations
- M.smulShortComplex r = { X₁ := M, X₂ := M, X₃ := ModuleCat.of R (QuotSMulTop r ↑M), f := ModuleCat.ofHom (r • LinearMap.id), g := ModuleCat.ofHom (r • ⊤).mkQ, zero := ⋯ }
Instances For
@[simp]
@[simp]
@[simp]
theorem
ModuleCat.smulShortComplex_X₃_isModule
{R : Type u}
[CommRing R]
(M : ModuleCat R)
(r : R)
:
@[simp]
@[simp]
@[simp]
theorem
ModuleCat.smulShortComplex_X₃_isAddCommGroup
{R : Type u}
[CommRing R]
(M : ModuleCat R)
(r : R)
:
theorem
ModuleCat.smulShortComplex_exact
{R : Type u}
[CommRing R]
(M : ModuleCat R)
(r : R)
:
(M.smulShortComplex r).Exact
theorem
IsSMulRegular.smulShortComplex_shortExact
{R : Type u}
[CommRing R]
{M : ModuleCat R}
{r : R}
(reg : IsSMulRegular (↑M) r)
:
(M.smulShortComplex r).ShortExact