Hom(N,M) is subsingleton iff there exists a smul regular element of M in ann(N) #
Let M
and N
be R
-modules. In this section we prove that Hom(N,M)
is subsingleton iff
there exist r : R
, such that IsSMulRegular M r
and r ∈ ann(N)
.
This is the case if Depth[I](M) = 0
.
Main Results #
IsSMulRegular.subsingleton_linearMap_iff
: forR
moduleN M
,Hom(N, M) = 0
iff there is aM
-regular inModule.annihilator R N
.
theorem
IsSMulRegular.linearMap_subsingleton_of_mem_annihilator
{R : Type u_1}
{M : Type u_2}
{N : Type u_3}
[CommRing R]
[AddCommGroup M]
[AddCommGroup N]
[Module R M]
[Module R N]
{r : R}
(reg : IsSMulRegular M r)
(mem_ann : r ∈ Module.annihilator R N)
:
Subsingleton (N →ₗ[R] M)
theorem
IsSMulRegular.subsingleton_linearMap_iff
{R : Type u_1}
{M : Type u_2}
{N : Type u_3}
[CommRing R]
[AddCommGroup M]
[AddCommGroup N]
[Module R M]
[Module R N]
[IsNoetherianRing R]
[Module.Finite R M]
[Module.Finite R N]
: